

Humboldt County Resource Conservation District Wadulh Lagoon Tidal Wetland Enhancement Project

Addendum #1

The purpose of this Addendum is to modify the Contract Documents for the subject project.

This Addendum shall become part of said Contract Documents.

Each bidder shall acknowledge receipt of this addendum in his/her bid proposal.

CLARIFICATIONS:

Item 1. CLARIFICATION: The earthwork volumes shown on sheet 7 of the contract design plans are based on the difference of the existing ground surface from the proposed design surface. The existing surface model was developed from LIDAR data. The LIDAR data was compared with RTK survey data. In the open pasture areas where the majority of excavation will occur, the LIDAR data appear to be biased high by approximately +0.3 to +0.5 feet relative to the ground survey. Overall, the calculated earthwork balance has an estimated excess cut of 8,600 CY (See Design Plans Sheet 7). It is anticipated that there will be sufficient sediment to construct levees. Plans identify areas that may be used to place excess spoil.

The earthwork quantities include an unknown quantity of vegetation, which may be incorporated into landscape fill. Borings show that dense rooting does not extend more than approximately 0.5 feet below the ground surface, see the Geotechnical Investigation Report (March 6, 2024) and Addendum 1 to the Geotechnical Report (February 18, 2025) prepared by SHN and attached for reference.

- Item 2. CLARIFICATION: Nuisance water shall be contained and managed within the project limits of disturbance. The volume of nuisance water encountered and the extent for which it will need to be pumped / discharged will be subject to seasonal groundwater fluctuations, site soil characteristics, contractor's means / methods and regulatory permit compliance. This is further described in Technical Specification Section 01 57 00 and the Contractor is responsible for developing a water management plan that allows efficient grading operations. The approximate groundwater elevations are shown on the boring logs contained in the Geotechnical Investigation Report (March 6, 2024) and Addendum 1 to the Geotechnical Report (February 18, 2025) prepared by SHN and attached for reference.
- Item 3. CLARIFICATION: Seeding and mulching are limited to the surface areas of the LV-1 Lanphere Road Levee and LV-2 South Levee (Bid Item 9). Specific placement of silt fences, fiber rolls and other erosion / sediment control BMPs are not shown on the contract plans, however the awarded contractor is responsible to place temporary erosion / sediment control BMPs subject to site conditions, compliance with regulatory permits and in accordance with Bid Item 3, Stormwater Pollution Control requirements on Sheet 3 of the contract plans and the contractor provided erosion / sediment control plan.

SPECIFICATIONS:

<u>Item 4.</u> The unit for Bid Item 8 should be updated to Square Yards (SY) in the Bid Schedule (Page 13) and Measurement & Payment section, see red below.

BASE BID

BID ITEM NO.	ITEM DESCRIPTION	EST. QTY.	UNIT	UNIT COST	EXTENDED TOTAL AMOUNT
1	Project Area Mobilization and Demobilization	1	LS	\$	\$
2	Install Stabilized Construction Entrance	1	LS	\$	\$
3	Erosion Control, Water Management and Environmental Protection	1	LS	\$	\$
4	Construction Staking and Survey Control	1	LS	\$	\$
5	Phase 1 Earthwork	1	LS	\$	\$
6	Phase 2 Earthwork	1	LS	\$	\$
7	Phase 3 Earthwork	1	LS	\$	\$
8	Geogrid and Granular Backfill	3,250	SE SY	\$	\$
9	Seed and Straw Mulch	1	LS	\$	\$
10	Class II Aggregate Base	205	CY	\$	\$
11	18-inch HDPE Culvert Pipe	110	LF	\$	\$
12	18-inch Flap-gate	1	EA	\$	\$
13	Disposal	1	LS	\$	\$

TOTAL BASE BID:	Items 1 through 13 inclusive: \$	<u> </u>
-----------------	----------------------------------	----------

Note: The amount entered as the "Total Base Bid" should be identical to the Base Bid amount entered in Section 1 of the Bid Proposal form.

Item 8. Geogrid and Granular Backfill

Measurement and payment for this item shall be on a SQUARE FOOT SQUARE YARD basis. Payment shall include full compensation for all materials, labor, equipment and supervision necessary to install Geogrid and granular backfill as indicated on Plans and as described in the Specifications. Payment shall also include full compensation for all materials, labor, equipment and supervision necessary to complete all ground preparation, installation of Geogrid and granular backfill to achieve the required lines and grades shown on the Plans as required by the Specifications. Additional Geogrid beyond the quantities shown on Plans that are installed at the direction of the Project Engineer shall be paid on the same basis as above.

Item 9. Seed and Straw Mulch

Measurement for this item shall be on a LUMP SUM basis. Payment shall include full compensation materials, labor, equipment and supervision necessary to install seed and mulch on flood control levees.

Item 10. Class 2 Aggregate Base

Measurement and payment for this item shall be on a CUBIC YARD basis. Payment shall include full compensation for all materials, labor, equipment and supervision necessary to complete all

TECHNICAL SPECIFICATIONS SP-8

Attachments:

• Geotechnical Investigation Report (March 6, 2024) and Addendum 1 to the Geotechnical Report (February 18, 2025) prepared by SHN.

J.SL	May 27, 2025
Jeremy Svehla, P.E.	Date

END OF ADDENDUM NO. 1

Reference: 023156

March 6, 2024

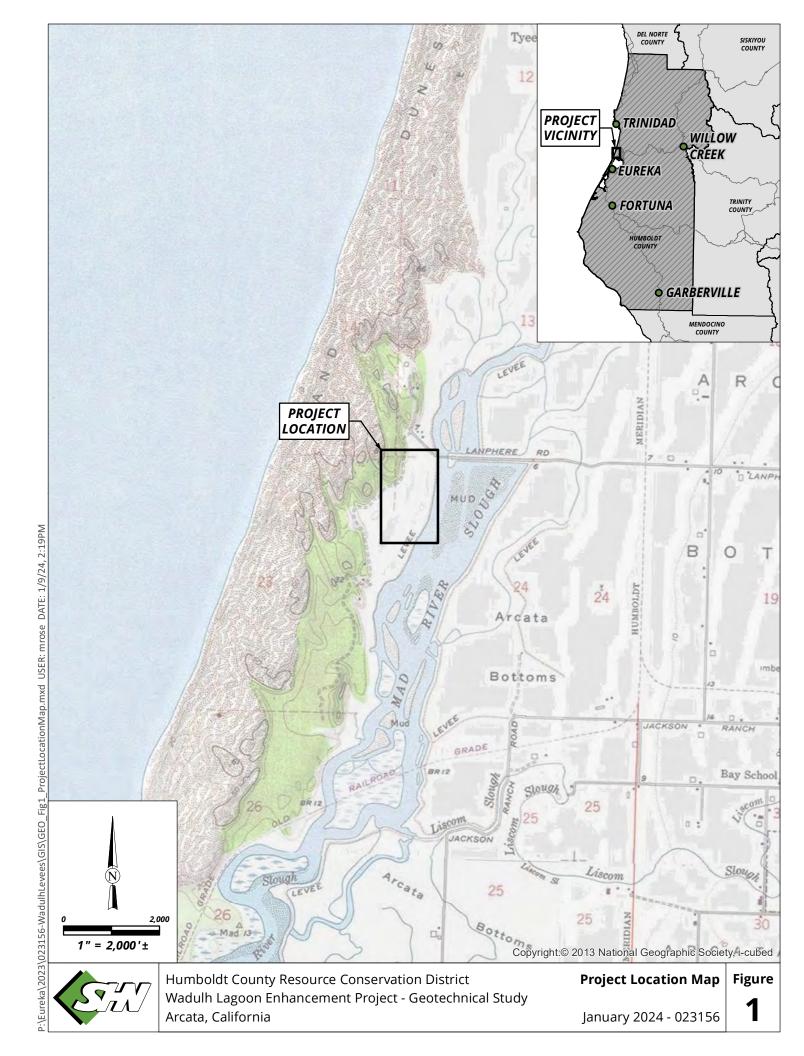
Jill Demers
Executive Director
Humboldt County Resource Conservation District
5630 South Broadway St
Eureka, CA 95503

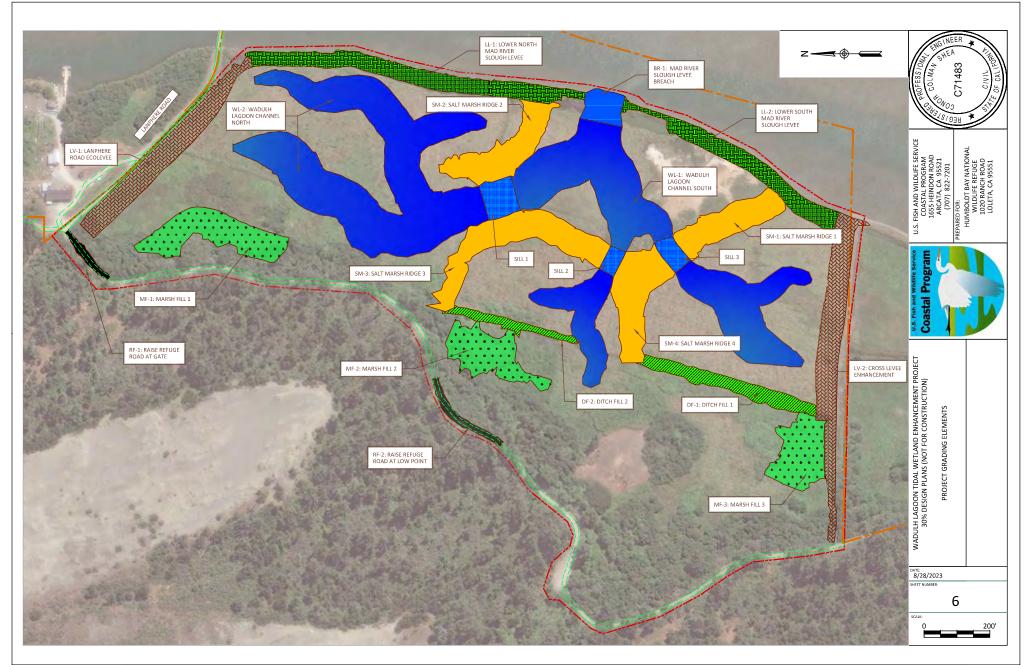
Subject: Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project

Humboldt County Resource Conservation District:

Introduction

This report provides the results of SHN's geotechnical investigation at Humboldt County Assessor's parcel number (APN) 506-291-014, located adjacent to the Mad River Slough near Arcata, California (Figure 1). We understand that the U.S. Fish and Wildlife Service (Arcata office) is developing plans for a tidal wetland enhancement project for the Humboldt Bay National Wildlife Refuge.


Preliminary project plans at the time of this writing propose to open the property to tidal influence by breaching and lowering the existing Mad River Slough levee along the east side of the property. A representative plan sheet from the 30% plan set is provided as Figure 2. The project also includes the excavation of a network of channels, the construction of salt marsh ridges, the filling of legacy drainage ditches, and the construction of two new/expanded levees at the south and north ends of the project (see Figure 2). We understand that the intent is to use onsite materials excavated from the channels to construct the levees.


The focus of our investigation was to characterize shallow subsurface conditions within the excavation areas and to develop recommendations for construction of the levees. Our scope of work included a subsurface investigation including seven hand-auger borings, laboratory testing of selected soils samples, and the preparation of this report. Below, we provide our findings, conclusions, and soils-related recommendations for construction of the levees.

Site Description

The project site includes historic grazing land adjacent to the Mad River Slough (to the east) and Lanphere Dunes Road (to the west) and associated drainage control features. The site is accessed through the "Arcata Bottoms" by a combination of paved and unpaved roads. The project area is

Humboldt County Resource Conservation District Wadulh Lagoon Enhancement Project - Geotechnical Study Arcata, California

Project Grading Elements | Figure

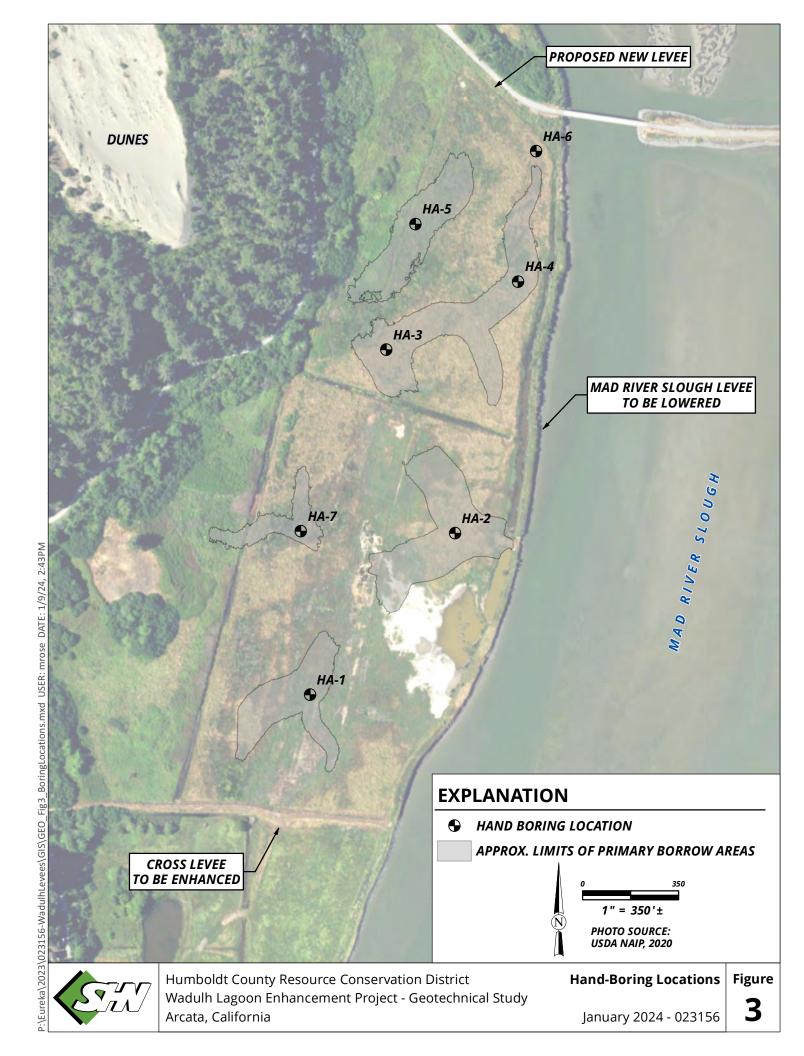
January 2023 - 023156

Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project March 6, 2024

Page 2

generally flat to gently sloping (towards the slough) and vegetated with wetland forest and dense grasses. Ground surface elevations are approximately 3 to 4 feet within the lowland area and from 10 to 45 feet (North American vertical datum, 1988 [NAVD88]) on the western slope. There are currently two existing levees at the site: the Mad River Slough Levee along the eastern edge bordering Mad River Slough, and a cross-levee oriented east to west connecting the Mad River Slough Levee to the access road at the west end of the parcel.

The property was diked off in the 1930s and has been historically used as grazing land. A number of small drainage ditches and small swales drain the property though a culvert with a tide gate. The Lanphere Dunes are situated immediately to the west. Springs along the base of the dunes supply water to a wetland forest along the western edge of the property. The existing Mad River Slough Levee is partially compromised by heavy erosion on the slough side, with nearly half of the levee fill prism missing in some areas. Those areas are generally unvegetated and exhibit vertical (to undercut) outboard slope faces.


The existing cross-levee on the south side of the project was constructed by the adjacent property owner using a mix of materials supplied by the California Department of Transportation (Caltrans), which included large cobble-sized rock. The levee is relatively narrow with 2:1 side slopes.

Field Investigation and Laboratory Testing

SHN conducted field investigations on October 13 and 20, 2023, to review existing surficial conditions, advance hand-auger borings, and collect soil samples for laboratory testing. Seven hand-auger borings (HA-1 through HA-7) were advanced across the site. The boring locations were selected to generally characterize soils conditions in proposed new lagoon channel/borrow areas, and to evaluate groundwater conditions. The borings were advanced to depths ranging from 3 to 5 feet below grade using a 3-inch auger bucket. Figure 3 shows approximate locations of the hand-auger borings. Boring logs are included as Appendix 1.

Soils encountered in our borings were logged and described in the field in general accordance with ASTM-International (ASTM) standard D 2488. Soil samples were collected at regular intervals throughout the soil profile in each boring and returned to SHN's lab in Eureka for geotechnical index testing. Inplace soil samples were obtained by hand-driving a 2.5-inch-inside-diameter (ID), 3.0-inch-outside-diameter (OD) Modified California Sampler (MCS) containing steel liners; bulk soil samples were collected from the auger bucket. Laboratory tests included moisture content and density, percent passing the No. 200 sieve, Atterberg limits, and organic content. Additionally, we collected two 5-gallon bucket samples for the development of compaction curves on soil materials likely to be used to construct the new levees. Results of laboratory testing are shown on Table 1 below, included on the boring logs in Appendix 1, and attached as Appendix 2.

Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project March 6, 2024

Page 3

Table 1. Laboratory Test Results

Table 1.	Laborator	y rest kesu						
Sample Location	In-situ Dry Density (pcf) ^a	In-situ Moisture Content	Organic Content	Liquid Limit	Plastic Index	Optimum Moisture Content	Maximum Dry Density (pcf)	Percent Fines (Passing No. 200 sieve)
HA-1						21.6%	99.2	
0-1'						21.070	33.2	
HA-1	64	49%						
2.5-3'	04	4370						
HA-1			10%	83	39			
3-3.5'			1070	0.5	33			
HA-2	81	18%						62%
0.5-1'	01	1070						0270
HA-2								95%
2-2.5'								3370
HA-3	54	66%		124	37			
0.5-1'	J-1	0070		124	57			
HA-3			12%					
1-1.5'			1270					
HA-4								
0-1'								
HA-4 0.5-1'	50	61%				24.9%	90.1	
HA-5	60	4007						
0.8-1'	69	49%						
HA-5			120/					
0-1'			13%					
HA-5				56	23			
3-3.5'				<u> </u>				
HA-7								95%
0.25-0.75'								95%
HA-7	61	40%	15%	58	22			
1-1.5'	ΟI	4070	1 370	50	~~			

^a pcf: pounds per cubic foot

Findings

Soil Conditions

Soils observed in the hand-auger borings consist primarily of fine-grained alluvium interpreted to be intertidal bay margin and overbank flood deposits. The organic-rich topsoil encountered in each boring was generally thin (1 to 2 inches) and contained an abundance of very fine roots gradually decreasing

Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project March 6, 2024

Page 4

with depth. Below the topsoil, we encountered highly organic silt varying in consistency from soft to medium stiff at all seven boring locations. Laboratory testing indicates the fine-grained soils encountered in the borings are predominantly organic silts (OH). One notable difference in stratigraphy was in borings HA-3 and -4, where we encountered loose, saturated fine sand at 2 feet and 1.5 feet below the ground surface (BGS). The sand was loose enough that it tended to collapse in the borehole, but the sand extended to the bottom of each boring (4.5 feet and 3 feet BGS). In HA-2, we encountered loose, dry silty sand from 0.5 to 2.3 feet.

Laboratory test results on six samples indicate that the dominant materials within the proposed borrow areas consist of highly plastic/organic silt (OH). The in-situ dry density of these borrow soils ranged from 50 to 81 pounds per cubic foot (pcf) with an average of 63 pcf. The moisture contents of the six in-situ soil samples range from 18% to 66%, with an average of 47%. Two laboratory compaction tests on the organic silts yielded maximum dry densities of 90 and 99 pcf, with an average of 95 pcf. Optimum moisture contents for the two samples were approximately 22% and 25%, with an average of 23%. The in-situ moisture content results reported in Table 1 on the previous page were specific to the location, depth, and time of sampling. Actual moisture conditions at other times and locations should be expected to vary.

Groundwater Conditions

Groundwater elevations at the time of our investigation ranged from -0.4 feet (HA-2) to 2.9 feet (HA-5) NAVD88 using the publicly available 2019 light detection and ranging (LiDAR) dataset as a ground surface reference. Groundwater elevations are presented in Table 2. Mottling was observed in the fine-grained materials above the water table in each boring. Groundwater is anticipated to fluctuate seasonally and be higher during the wettest portion of the season and following periods of persistent precipitation. Groundwater appears to be highest along the west edge of the project, presumably being recharged by groundwater within the dunes. Minor tidal influence of groundwater is expected in areas along the eastern edge of the project, closest to the slough, though we did not investigate this condition.

Table 2. Groundwater Elevations

Boring ID	Date Measured	Elevation Ele		Depth to Water (feet BGS ^b)		
HA-1	10/13/2023	2.9	0.1	2.8		
HA-2	10/13/2023	3.6	-0.4	4.0		
HA-3	10/13/2023	4.0	2.6	1.4		
HA-4	10/20/2023	3.2	1.2	2.0		
HA-5	10/20/2023	4.1	2.9	1.2		
HA-6	10/20/2023	3.5	2.0	1.5		
HA-7	10/20/2023	2.3	0.9	1.4		

^a NAVD88: North American vertical datum, 1988

^b BGS: below ground surface

Humboldt County Resource Conservation District **Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project** March 6, 2024 Page 5

Conclusions

Suitability of Existing Soils for Levee Construction

Preliminary grading estimates by others (at the time of this writing) indicate that the proposed borrow areas (primarily lagoon channels) will provide sufficient fill material for construction of the levees. We understand that excess and/or unsuitable materials for levee construction will be used as non-structural fill in areas planned to support the development of marsh plains. Planned excavations that will generate the most material for reuse include the lagoon itself and the upper portions of the Mad River Slough levee along the eastern edge of the project. We understand that the majority of the fill for levee construction will be from the portions of the channels that will be excavated to an elevation of negative 2 feet (shown on Figure 3).

From these borrow areas, we anticipate that the most suitable materials for use as levee fill will be found just below the thin organic-rich topsoil, but above the groundwater table. Soils below the water table are likely to be difficult to manage and will likely need to be dried out prior to placement as structural fill.

Using comparisons of our in-situ density testing and the results from our laboratory compaction curves, we anticipate that there will be a net volume reduction of soils between the in-situ condition and the compacted condition. As an example, the average in-situ dry density of native organic silt soils collected above the October 2023 water table is 63 pcf and the average maximum dry density of similarly high compacted soils is 95 pcf. Assuming a range of 80 to 90 percent relative compaction of these soils, the range of compacted dry densities would be 76 pcf to 85 pcf, which calculates to a shrinkage of 17% to 26%, respectively.

It is important to point out that the six moisture/density samples primarily represent upper portions of the soil profile in proposed borrow areas. Deeper portions may well have higher moisture contents, particularly those portions below the water table. Considering that the vast majority of available proposed borrow material will have moisture contents of 50% or more, for the project (as envisioned) to proceed, we must conclude that all onsite borrow is suitable for levee construction. It is just a matter of what provisions must be employed to produce appropriate strategies for accessing, handling, and placing these materials in the proposed levee structures. It is likely that different strategies will be needed for the loose, saturated clean sand materials encountered in test borings HA-3 and HA-4.

Issues Related to Construction Operations

The combination of relatively shallow groundwater and the low-density/high water content nature of the majority of site soils will have a substantial impact on determining appropriate construction means and methods and the related construction equipment. As examples, heavy equipment traffic will quickly break through the ground surface and "liquefy" the subsoil to the point that ingress/egress will be compromised. Even repeated traffic below low ground pressure equipment is likely to be similarly problematic. Borrow area cut slopes will be subject to "slumping" unless they are at a gentle gradient and minimally disturbed during the excavation process. Areas where the loose sand is encountered

Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project March 6, 2024

Page 6

below the water table will be partially sensitive and may tend to "run" into the excavation as soon as they are exposed. Depending on soil moisture content, low angle fill slopes may be required for long term stability.

Recommendations

Based on the observations made in the field and the results of laboratory testing, there is a relatively small section of the soil profile that is unsaturated. As discussed above, these are the materials below the topsoil and above the groundwater table. It will be important to carefully plan the excavation activities to successfully remove these "target soils." We provide the following recommendations for removal and management of material from borrow areas intended for use as levee fills.

- 1. As much as feasible, avoid travel on the surface of the borrow areas until the driest materials have been removed. Excessive traffic can contaminate the target soils with surface organics and/or increase saturation by pumping or "punching" the soils into the water table.
- 2. Carefully scrape off the organic-rich topsoil to avoid over-excavation. In most borings, only a few inches of topsoil exist. Stockpile topsoil separately.
- 3. Carefully excavate and stockpile the driest materials (below topsoil and above groundwater) separately from other materials. If possible, spread the soils out in a thin layer so that they can dry.
- 4. Materials excavated from below the water table will be saturated and should be stockpiled separately from the drier materials. This material may be usable for levee fills if sufficient time and management is allowed for drying them out.

We provide the following recommendations for construction of the levees.

- 1. To prepare the subgrade surface to support structural fill, the footprint of the levee should be stripped of all existing vegetation and major root systems. This material should be stockpiled for later use (see #8, below).
- 2. Equipment with relatively low ground pressure should be used as much as feasible and the number of trips necessary to prepare the subgrade should be minimized to avoid causing pumping soil conditions.
- 3. With the exception of vertical sides or steps, subgrade surfaces to receive levee fill should be cut-graded to slope no steeper than 15 percent.
- 4. A representative of SHN should conduct a review of the exposed subgrade surface that will support the levee. This evaluation may include in-place soil density testing, as well as proofrolling as described in the following paragraph. If necessary, the SHN representative will recommend that remaining unsuitable soils (such as overly weak, compressible, or disturbed soils) be additionally stripped.
- 5. Scarify and compact (90% minimum ASTM 1557) the upper 6 inches of exposed subgrade soils that are to receive levee fills. Alternatively, the subgrade surface may be proofrolled using a loaded 10-wheel, 10-cubic-yard dump truck, or equivalent. The proofrolling should be

Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project March 6, 2024

Page 7

accomplished under the observation of the representative from SHN with the soil damp or moist (not wet or dry), and a firm, non-yielding surface should be evident during the proofrolling. If a yielding surface is observed (pumping, weaving under wheel loads), the yielding area may need to be additionally excavated and the over-excavated material replaced with Caltrans specification Class 2 baserock (or an approved alternative), in a manner that will result in a stable subgrade surface under the proofrolling, following the over-excavation and replacement.

- 6. Levee fills should be placed in loose, horizontal lifts not exceeding 8 inches and compacted to a minimum of 90% of the maximum relative dry density as determined by the current ASTM D1557 test method.
- 7. The levee side slopes should be placed no steeper than 3:1 (horizontal to vertical).
- 8. Following levee construction to the desired height and width, the stockpiled topsoil should be spread over the levee, wheel-rolled into place, and seeded to provide erosion control and promote the establishment of vegetative cover.

Alternative Options

Conventional structural fill placement specifications as described above will only be achievable with ambitious soil drying and/or treatment operations prior to placement. This will require substantial time and handling effort and, therefore, may be contradictory to project goals. With an acceptance of lower-level performance expectations, a much less intensive and time-consuming levee construction process could be developed and implemented. These methods would reflect successful levee construction practices in low-impact environments over the years in the local area. With your direction and input, we can provide a set of specific recommendations for a selected option.

Closure

The analyses, conclusions, and recommendations contained in this report are based on site conditions that we observed at the time of our investigation, data from our subsurface explorations and laboratory tests, our current understanding of proposed project elements, and on our experience with similar projects in similar geotechnical environments. We have assumed that the information obtained from our limited subsurface explorations is representative of subsurface conditions throughout the site.

We recommend a representative of our firm confirm site conditions during the construction phase. If subsurface conditions differ significantly from those disclosed by our investigation, we should be given the opportunity to re-evaluate the applicability of our conclusions and recommendations. Some alteration of recommendations may be appropriate.

If the scope of the proposed construction changes from that described in this report, our recommendations should also be reviewed.

If there is a substantial lapse of time between the submission of our report and the start of work at the site, or if conditions have changed due to natural causes or construction operations at or adjacent to the site, we should review our report to determine the applicability of the conclusions and

Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project March 6, 2024

Page 8

recommendations considering the changed conditions and time lapse. This report is applicable only to the project and site studied.

The conclusions and recommendations presented in this report are professional opinions derived in accordance with current standards of professional practice. Our recommendations are tended on the assumption that design of the improvements will conform to their intent. No warranty is expressed or implied.

The field and laboratory work was conducted to investigate the site characteristics specifically addressed by this report. Assumptions about other site characteristics, such as hazardous materials contamination, or environmentally sensitive or culturally significant areas, should not be made from this report.

Please call me at 707-441-8855 if you have any questions.

Sincerely,

SHN

Jason Buck Principal Engineering Geologist

JPB:ame

Appendices 1. Boring Logs

2. Laboratory Test Results

BORING LOG KEY

SAMPLE TYPES

SYMBOLOGY

HAND DRIVEN TUBE SAMPLE

STABILIZED WATER LEVEL

INITIAL WATER LEVEL

GRAB SAMPLE FROM AUGER BUCKET

---- APPROXIMATE CONTACT

— WELL-DEFINED CONTACT

ABBREVIATIONS

PP Pocket Penetrometer

MC Moisture Content

DD Dry Density

LL Liquid Limit

PL Plastic Limit

BORING NUMBER HA-1 PAGE 1 OF 1

1										
		boldt County Resou	ırce C	onserv	ation D	istrict				
		MBER <u>023156</u>				40/40/05	PROJECT LOCATION APN 506-291-014			
		D 10/13/23								
1										
		THOD Hand Auger					∑ AT TIME OF DRILLING 2.75 ft / Elev 0.15 ft			
	_	A. Troia			KED BY	R. Johnson	-			
5 NOTE	s	T					-			
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION			
13 ZUZ			ML	1/. 1/1/		(ML) SILT, soft, m (TOPSOIL)	noist, dark brown, abundant organics, dense mat of very fine roots,			
 	GB MC	PP = 1.3 tsf MC = 49% DD = 64 pcf	ОН		<u>0.3 ft</u> _	(OH) ORGANIC S slightly mottled/Fe	BILT, medium stiff, dry, brownish gray, high plasticity, low dry strength, eO staining, many very fine roots. moist n organics/root content.			
	₩ GB	% Organics = 9.6	_		⊻	Becomes wet, so	ft.			
	€ GB					Becomes dark gra	ay. wn and black, stratified, organic-rich deposits.			
5 5					5.0 ft		Bottom of borehole at 5.0 feet.			

BORING NUMBER HA-2 PAGE 1 OF 1

	PAN	1					PAGE 1 OF 1
CLIE	NT Humb	oldt County Reso	urce C	onserv	ation D	istrict	PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement
PROJ	JECT NUM	BER <u>023156</u>					PROJECT LOCATION APN 506-291-014
						10/13/23	GROUND ELEVATION 3.6 ft NAVD88 HOLE SIZE 4"
1	ORILLING CONTRACTORORILLING METHOD _Hand Auger						
							$\underline{\nabla}$ AT TIME OF DRILLING _4.00 ft / Elev -0.40 ft
- l		A. Troia		CHEC	KED BY	R. Johnson	-
NOTE	ES						-
3\023156-WADULHLEVEI O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION
S/ZUZ,			ML	7.1.7	0.1 ft_		noist, dark brown, abundant organics, dense mat of very fine roots, <u>3.</u>
<u>"</u> -	- I				'		AND, soft, dry, light grayish brown, very fine sand.
			ML			,	
<u> </u>			├		0.5 ft	(MI) SANDY SII	3. T, soft, dry, grayish brown to brownish gray, very fine roots, weak
GIN I CLUFKOJECI SVPKOJECI I	MCS	MC = 18% DD = 81 pcf Fines = 62%				mottling with FeO	staining.
OGIN I LIBRARY/BEN I LE Y			ML			Becomes plastic.	
2			┼		2.0 ft_	(OH) ORGANIC S	
24 17:27 - NEUKEKANGEUK	GB	Fines = 95%				plasticity, 5% very	y fine sand. nammer mod-cal sample from 2.5 to 3' with approx. 4" recovery.
3							
- J						Becomes medium	n stiff.
<u> </u>	1						
<u>~</u>							
			ОН		Ā	Becomes moist. o	contains FeO stains, trace very fine sand.
<u> </u>						,	
⊠ Ш	-						
4					Σ	, 	
<u>-</u>						Becomes wet.	
S	1						
쵞-							
F E							
量]						
<u>₹</u> -	-						
5					5.0 ft		-1.4

BORING NUMBER HA-3 PAGE 1 OF 1 **CLIENT** Humboldt County Resource Conservation District PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement PROJECT NUMBER 023156 PROJECT LOCATION APN 506-291-014 GROUND ELEVATION 4 ft NAVD88 HOLE SIZE 4" **COMPLETED** 10/13/23 **DATE STARTED** 10/13/23 DRILLING CONTRACTOR **GROUNDWATER DEPTH** DRILLING METHOD Hand Auger LOGGED BY A. Troia CHECKED BY R. Johnson GENERAL BH/TP EUREKA COPY - DATA TEMPLATE FOR TESTING.GDT - 3/3/24 17:27 - "EUREKA/GEOGROUP/GINTLIBRARY/BENTLEY/GINTCL/PROJECT S/PROJECT FILES/2023/023/156-WADULHLEVEES.GPJ **NOTES** SAMPLE TYPE NUMBER GRAPHIC LOG DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION **TESTS** (ML) SILT, soft, moist, dark brown, abundant organics, dense mat of very fine roots, ·<u>`</u>0.1 ft_ (TOPSOIL) (OH) ORGANIC SILT, dry, grayish brown, fine roots/organics, low dry strength, high plasticity. MC = 66% DD = 54 pcf GB LL = 124 PL = 87 ОН Becomes moist. ∇ PP = 1.5 tsfm GB % Organics = Organic rich, dark brown horizon. 11.8 Grades to gray. (SP) POORLY GRADED SAND, loose, wet, brownish gray, trace silt, quartz rich, fine sand. GB Grades to dark gray. SP 4 Wet, loose sand. Bottom of borehole at 4.5 feet.

BORING NUMBER HA-4 PAGE 1 OF 1

CLIEN	NT Huml	ooldt County Reso	urce C	onserv	ation Di	strict	
PROJ	ECT NUN	MBER <u>023156</u>					PROJECT LOCATION APN 506-291-014
1						10/20/23	GROUND ELEVATION 3.2 ft NAVD88 HOLE SIZE 4"
DRILL	ING CON	ITRACTOR					GROUNDWATER DEPTH
							\overline{Y} AT TIME OF DRILLING 2.00 ft / Elev 1.20 ft
LOGG	SED BY	A. Troia		CHEC	KED BY	R. Johnson	
NOTE	S						
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION
3			ML	7 77		(ML) SILT, soft, m (TOPSOIL).	oist, dark brown, abundant organics, dense mat of very fine roots,
- - -	∰ GB				0.3 ft	` 	29
	-					(OH) ORGANIC S toughness, low dry	ILT, soft to medium stiff, dry to slightly moist, high plasticity, low / strength, fine roots/organics, slightly mottled with FeO stains near
			1			organics.	
2 - 1	МС	PP = 1.3 tsf MC = 61% DD = 50 pcf	ОН				
						Becomes moist to	wet at 1'.
	₩ GB						
] 	-						
{					1.5 ft <u>▼</u>	(SP) POORLY GR	ADED SAND, loose, wet, gray to bluish gray, trace silt, quartz rich, fine
<u> </u>						(beach/dune) sand	d.
<u>-</u>	-						
2					⊻		
	1						
	-		SP				
			"				
1						Cuadaa ta dauk suu	
<u> </u>	-					Grades to dark gra Hole caving due to	ay. b loose, wet sand.
<u>-</u>						j	
3					3.0 ft		0.2
	1	<u>I</u>	1	<u> </u>	JJ.U IL		Bottom of borehole at 3.0 feet.
INCIDENTIAL BUILL EDIRECT - DALA TENTENIETON LESTINGIOS							

BORING NUMBER HA-5 PAGE 1 OF 1

1			urce C	onserv	ation Di	strict	PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement			
		IBER <u>023156</u>		COMP	LETER	40/00/02	PROJECT LOCATION APN 506-291-014			
1		D 10/20/23				10/20/23	GROUND ELEVATION 4.1 ft NAVD88 HOLE SIZE 4"			
							GROUNDWATER DEPTH			
1		HOD <u>Hand Auge</u> A. Troia		CUECI	CED BY	D Johnson	✓ AT TIME OF DRILLING 1.20 ft / Elev 2.90 ft			
NOTE		A. ITOIA		CHECK	CD D1	K. Johnson				
INOIL			1	1	1					
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION			
	GB MC	PP = 1.3 tsf MC = 49% DD = 69 pcf % Organics = 13.3	МЬ		<u>0.1 ft</u>	(OH) ORGANIC SI	rk brown, abundant organics, fine roots, low plasticity, (TOPSOIL). 4.0 LT, soft, wet, dark gray to dark grayish brown, high plasticity.			
3		LL = 56				Becomes medium	stiff.			
		PL = 33			3 5 ft	Grades to dark gra				
					3.5 ft		Bottom of borehole at 3.5 feet.			
במינוא 200 - במינו ב										

BORING NUMBER HA-6 PAGE 1 OF 1

1										
CLIEN	IT Humb	ooldt (County	Resour	ce Conservation District	PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement				
PROJ	ECT NUM	IBER	0231	56		PROJECT LOCATION APN 506-291-014				
DATE	STARTE	D _10)/20/23		COMPLETED _10/20/23	GROUNDWATER DEPTH				
DRILL	ING CON	ITRAC	CTOR _							
1						✓ AT TIME OF DRILLING 1.50 ft / Elev 2.00 ft				
, I		A. Tro	oia		CHECKED BY R. Johnson					
NOTE	S					_				
DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION				
		ML	1		(ML) SILT, soft, moist, dark brown	, abundant organics, dense mat of very fine roots, (TOPSOIL).				
				<u>0.2 ft</u>	(OH) ORGANIC SILT, soft, dry to	moist, high plasticity, brownish gray, FeO stains near organics (fine roots).				
1 -	₩ GB			Ā	Organic-rich layer, very dark brown	n.				
2		ОН		⊻	Grades to dark gray, decrease in o	organic content.				
3	€ GB				Grades to dark gray; some fine roo	ots.				
			1~.~.~.4	-		Bottom of borehole at 3.0 feet.				

BORING NUMBER HA-7 PAGE 1 OF 1

CLIEN	IT Humb	ooldt County Reso	urce C	onserv	ration District PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement
1		IBER <u>023156</u>			PROJECT LOCATION APN 506-291-014
					LETED 10/20/23 GROUND ELEVATION 2.3 ft NAVD88 HOLE SIZE 4"
1					GROUNDWATER DEPTH
		HOD Hand Auge			
. l	SED BY _/ S			CHEC	KED BY R. Johnson
NOTE	<u> </u>				
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
			ML	7 77	(ML) SILT, soft, moist, dark brown, abundant organics, dense mat of very fine roots, (TOPSOIL).
	∰ GB	Fines = 95%	<u> </u>		0.3 ft
	MC				(OH) ORGANIC SIL1, soft to medium stiff, dry, brownish gray, moderate cementation, high plasticity, organic rich (very fine roots).
1 -	€ GB	PP = 4.3 tsf MC = 40% DD = 61 pcf LL = 58 PL = 36			▼ Becomes moist, soft, low toughness, grades to gray-dark gray.
2	™ GB	% Organics = 14.7	ОН		Becomes wet.
	€ GB				
3	® GB				3.2 ft
			1	,	Bottom of borehole at 3.2 feet.
בי מניו בסיביא ססו בסיבי במים ובשו ביוב סיב					

Laboratory Test Results

DENSITY BY DRIVE- CYLINDER METHOD (ASTM D2937)

Project Name:WadulhProject Number:023156Performed By:JMADate:11/27/23Checked By:KEWDate:12/5/2023

Project Manager: AT

Lab Sample Number	23-1069	23-1072	23-1075	23-1079	23-1083
Boring Label	HA-1	HA-2	HA-3	HA-4	HA-5
Sample Depth (ft)	2-2.5'	0.5-1.0'	0.5-1.0'	0.5-1.0'	0.5-1.0'
Diameter of Cylinder, in	2.42	2.42	2.42	2.42	2.42
Total Length of Cylinder, in.	6.00	6.00	6.00	6.00	6.00
Length of Empty Cylinder A, in.	0.00	0.00	0.00	0.00	0.00
Length of Empty Cylinder B, in.	1.85	0.88	1.60	0.82	0.73
Length of Cylinder Filled, in	4.15	5.12	4.40	5.18	5.27
Volume of Sample, in ³	19.09	23.55	20.24	23.83	24.24
Volume of Sample, cc.	312.80	385.91	331.64	390.44	397.22
	<u> </u>				

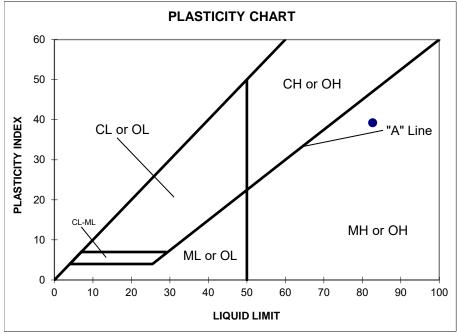
Pan #	a6	A9	a7	a2	a1
Weight of Wet Soil and Pan	560.2	677.7	559.3	585.9	737.2
Weight of Dry Soil and Pan	405.9	589.6	371.0	397.6	521.1
Weight of Water	154.3	88.1	188.3	188.3	216.1
Weight of Pan	87.5	88.1	86.7	87.5	81.6
	240.4	504 F	2042	2404	420 5
Weight of Dry Soil	318.4	501.5	284.3	310.1	439.5
Percent Moisture	48.5	17.6	66.2	60.7	49.2
Dry Density, g/cc	1.02	1.30	0.86	0.79	1.11
Dry Density, lb/ft³	63.5	81.1	53.5	49.6	69.1

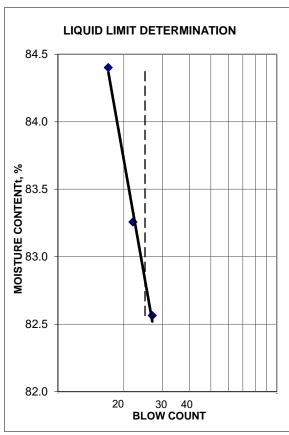
DENSITY BY DRIVE- CYLINDER METHOD (ASTM D2937)

Project Name: Wadulh		Project Number:	023156
Performed By: JMA		Date:	11/27/23
Checked By: KEW		Date:	12/5/2023
Project Manager: AT			
	1	Т Т	
Lab Sample Number	23-1089		
Boring Label	HA-7		
Sample Depth (ft)	0.5-1.0'		
Diameter of Cylinder, in	2.42		
Total Length of Cylinder, in.	6.00		
Length of Empty Cylinder A, in.	0.00		
Length of Empty Cylinder B, in.	0.00		
Length of Cylinder Filled, in	6.00		
Volume of Sample, in ³	27.60		
Volume of Sample, cc.	452.24		
		T T	Г
Pan #	A5		
Weight of Wet Soil and Pan	707.9		
Weight of Dry Soil and Pan	529.5		
Weight of Water	178.4		
Weight of Pan	86.9		
Weight of Dry Soil	442.6		
Percent Moisture	40.3		
Dry Density, g/cc	0.98		
Dry Density, lb/ft³	61.1		

Percent Passing #200

PERCENT PASSING # 200 SIEVE (ASTM - D1140)

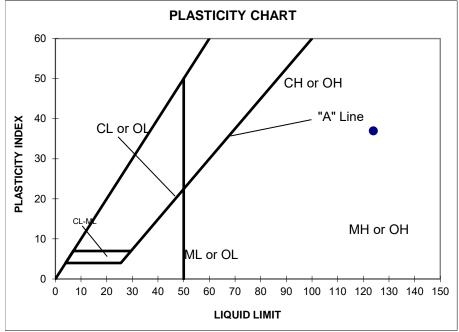

Project Name:	Wadulh		Project Number:	023156
Performed By:	JMA		Date:	11/29/2023
Checked By:	KEW		Date:	12/5/2023
Project Manager:	AT		_	
	•	1	1	•
Lab Sample Number	23-1073	23-1074	23-1088	
Boring Label	HA-2	HA-2	HA-7	
Sample Depth	0.5-1.0'	2-2.5'	0-0.5'	
Pan Number	ss2	ss3	ss11	
Dry Weight of Soil & Pan	388.5	371.5	426.4	
Pan Weight	193.4	197.1	192.8	
Weight of Dry Soil	195.1	174.4	233.6	
Soil Weight Retained on #200&Pan	268.5	206.3	205.3	
Soil Weight Passing #200	120.0	165.2	221.1	
Percent Passing #200	62	95	95	
Γ		1	T T	
Lab Sample Number				
Boring Label				
Sample Depth				
Pan Number				
Dry Weight of Soil & Pan				
Pan Weight				
Weight of Dry Soil				
Soil Weight Retained on #200&Pan				
Soil Weight Passing #200				

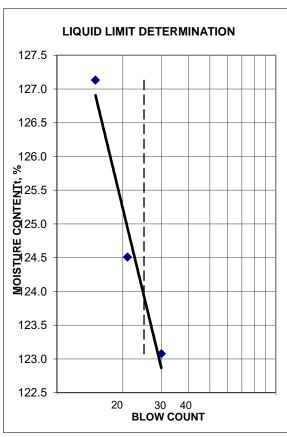


JOB NAME:	Wadulh	JOB #:	023156	LAB SAMPLE #:	23-1070
SAMPLE ID:	HA-1 @ 3-3.5'	PERFORMED BY:	JMA	DATE:	11/30/2023
PROJECT MANAGER:	AT	CHECKED BY:	KEW	DATE:	12/5/2023

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	19	20	10	11	12
В	PAN WT. (g)	16.870	17.140	29.590	28.670	29.340
С	WT. WET SOIL & PAN (g)	23.010	23.410	36.710	36.770	37.970
D	WT. DRY SOIL & PAN (g)	21.160	21.500	33.490	33.090	34.020
E	WT. WATER (C-D)	1.850	1.910	3.220	3.680	3.950
F	WT. DRY SOIL (D-B)	4.290	4.360	3.900	4.420	4.680
G	BLOW COUNT			27	22	17
Н	MOISTURE CONTENT (E/F*100)	43.1	43.8	82.6	83.3	84.4

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
83	39	43

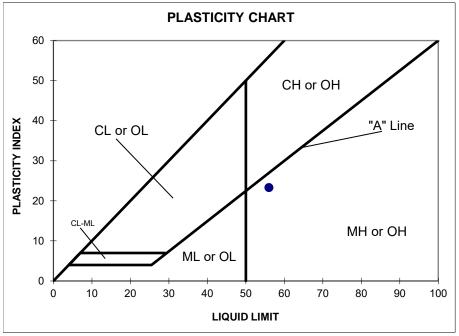


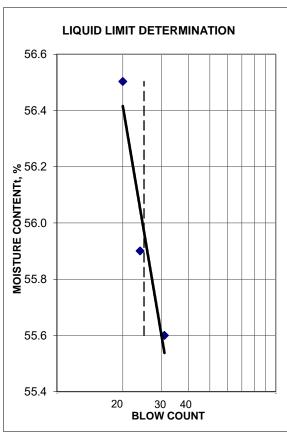


JOB NAME:	Wadulh	JOB #:	023156	LAB SAMPLE #:	23-1075
SAMPLE ID:	HA-3 @ 0.5-1.0'	PERFORMED BY:	JMA	DATE:	12/1/2023
PROJECT MANAGER:	AT	CHECKED BY:	KEW	DATE:	21/5/23

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	17	18	7	8	9
В	PAN WT. (g)	20.210	20.140	28.880	29.020	28.580
С	WT. WET SOIL & PAN (g)	26.350	27.450	34.970	35.890	34.440
D	WT. DRY SOIL & PAN (g)	23.470	24.080	31.610	32.080	31.160
E	WT. WATER (C-D)	2.880	3.370	3.360	3.810	3.280
F	WT. DRY SOIL (D-B)	3.260	3.940	2.730	3.060	2.580
G	BLOW COUNT			30	21	15
Н	MOISTURE CONTENT (E/F*100)	88.3	85.5	123.1	124.5	127.1

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
124	37	87

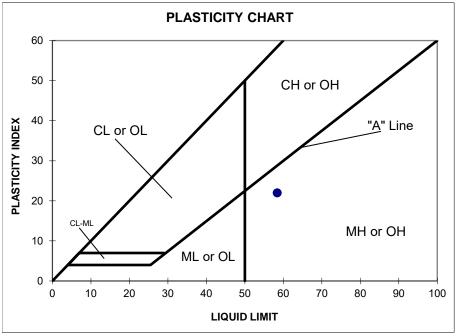


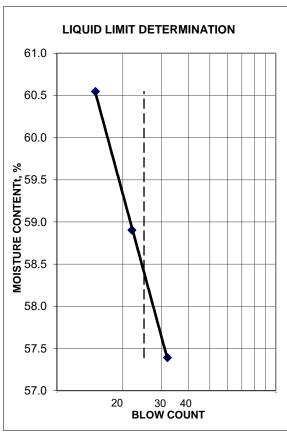


JOB NAME:	Wadulh	JOB #:	023156	LAB SAMPLE #:	23-1085
SAMPLE ID:	HA-5 @ 3-3.5'	PERFORMED BY:	JMA	DATE:	11/30/2023
PROJECT MANAGER:	AT	CHECKED BY:	KEW	DATE:	12/5/2023

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	13	14	1	2	3
В	PAN WT. (g)	22.000	20.120	29.590	28.920	28.990
С	WT. WET SOIL & PAN (g)	28.030	26.710	37.370	36.450	36.330
D	WT. DRY SOIL & PAN (g)	26.550	25.080	34.590	33.750	33.680
E	WT. WATER (C-D)	1.480	1.630	2.780	2.700	2.650
F	WT. DRY SOIL (D-B)	4.550	4.960	5.000	4.830	4.690
G	BLOW COUNT			31	24	20
Н	MOISTURE CONTENT (E/F*100)	32.5	32.9	55.6	55.9	56.5

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
56	23	33





JOB NAME:	Wadulh	JOB #:	023156	LAB SAMPLE #:	23-1090
SAMPLE ID:	HA-7 @ 1-1.5'	PERFORMED BY:	JMA	DATE:	12/1/2023
PROJECT MANAGER:	AT	CHECKED BY:	KEW	DATE:	12/5/2023

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	19	20	10	11	12
В	PAN WT. (g)	16.880	17.140	29.580	28.670	29.360
С	WT. WET SOIL & PAN (g)	22.880	23.320	36.820	35.630	35.830
D	WT. DRY SOIL & PAN (g)	21.290	21.660	34.180	33.050	33.390
Е	WT. WATER (C-D)	1.590	1.660	2.640	2.580	2.440
F	WT. DRY SOIL (D-B)	4.410	4.520	4.600	4.380	4.030
G	BLOW COUNT			32	22	15
Н	MOISTURE CONTENT (E/F*100)	36.1	36.7	57.4	58.9	60.5

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
58	22	36

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

COMPACTION TEST DATA SHEET

Job Name: waduin Geotech Lab Sample Number: 23-105	Job Name:	Wadulh Geotech	Lab Sample Number:	23-1050
--	-----------	----------------	--------------------	---------

Job Number:	023156	Tested By:	ZA	Date Tested:	11/8/23
Sample ID:	HA-1 @ 0-1'	Checked By:	KEW	Date Checked:	12/5/23

Sample Description: Subgrade Soil

Initial Gradation: + 3/4"= + 3/8"= 0.0 0.0 % + No.4= 0.0

Moisture Correction Gauge Number: Corection Factor:

TEST DATA

	12012	7 117 1			
Mold + Wet Soil, ю	13.264	12.897	13.038	13.135	13.251
Mold, lbs	9.229	9.229	9.229	9.229	9.229
Moist Soil, lbs	4.035	3.668	3.809	3.906	4.022
Factor (1/Vol.), cu. ft	30.00	30.00	30.00	30.00	30.00
WET DENSITY, pcf	121.0	110.0	114.3	117.2	120.7
Drying Dish No.	t9	t7	t11	t2	t8
Wet Soil and Dish	805.9	503.6	567.1	640.0	603.5
Dry Soil and Dish	668.1	456.3	505.3	559.3	516.8
Moisture, g.	137.8	47.3	61.8	80.7	86.7
DIsh, grams	114.1	113.0	113.3	112.5	115.4
Dry Soil, g.	554.0	343.3	392.0	446.8	401.4
MST. CONTENT, %	24.9	13.8	15.8	18.1	21.6
DRY DENSITY, pcf	96.9	96.7	98.7	99.2	99.2
% Moist. Added					

TEST METHOD

[] STANDARD ASTM D 698

5.5 lb hammer, 12" drop, 3 layers

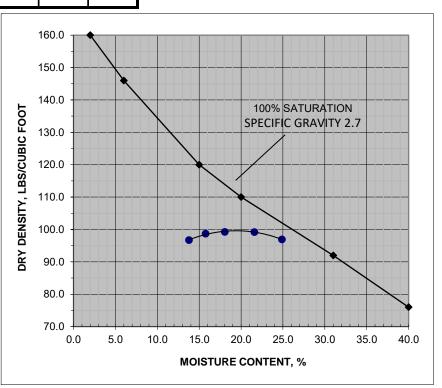
[x] MODIFIED ASTM D 1557

10 lb hammer, 18" drop, 5 layers

[x]	Manual ha	ammer	LJ	Mechanic	al hammer
	ASTM	Soil	Mold, in.	Blows	Mold Wt.

ASTM	Soil	Mold, in.	Blows	Mold Wt.
Α	SW	4	25	9.229

			4" Mold
	4	Retained on No.4 ≤ 25%	use passing No.4
			4" Mold
	В	No.4 ≥ 25% & 3/8" <25%	use passing 3/8"
			6" Mold
(0	3/8" ≥25% & 3/4" ≤30%	use passing 3/4"


MAXIMUM DRY DENSITY (pcf) NA 99.2

OPTIMUM MOISTURE CONTENT (%) 21.6

INITIAL GRADATION

Total Weight (gm)	15846

	Wt.	Wt.
Screen size	Screen	Cumulat
+ 3/4" screen	0	0
+ 3/8" screen	0	0
+ No.4 screen	0	0

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

COMPACTION TEST DATA SHEET

Job Name: Wadulh Geotech Lab Sample Number: 23-1051

Job Number:	023156	Tested By:	ZA	Date Tested:	11/8/23
Sample ID:	HA-4 @ 0-1'	Checked By:	KEW	Date Checked:	12/5/23

Sample Description: Subgrade Soil

Initial Gradation: + 3/4"= **0.0** % + 3/8"= **0.0** % + No.4= **0.0** %

Moisture Correction Gauge Number: Correction Factor:

TEST DATA

ILGI DATA								
Mold + Wet Soil, ю	12.828	12.944	12.983	13.067	13.009			
Mold, lbs	9.23	9.23	9.23	9.23	9.23			
Moist Soil, lbs	3.598	3.714	3.753	3.837	3.779			
Factor (1/Vol.), cu. ft	30.00	30.00	30.00	30.00	30.00			
WET DENSITY, pcf	107.9	111.4	112.6	115.1	113.4			
Drying Dish No.	ss5	ss10	t9	t8	t3			
Wet Soil and Dish	785.2	719.1	698.1	650.1	595.5			
Dry Soil and Dish	684.2	620.5	581.8	530.6	478.1			
Moisture, g.	101.0	98.6	116.3	119.5	117.4			
Dlsh, grams	195.5	195.4	115.1	115.4	114.7			
Dry Soil, g.	488.7	425.1	466.7	415.2	363.4			
MST. CONTENT, %	20.7	23.2	24.9	28.8	32.3			
DRY DENSITY, pcf	89.4	90.4	90.1	89.4	85.7			
% Moist. Added								

TEST METHOD

[] STANDARD ASTM D 698

5.5 lb hammer, 12" drop, 3 layers

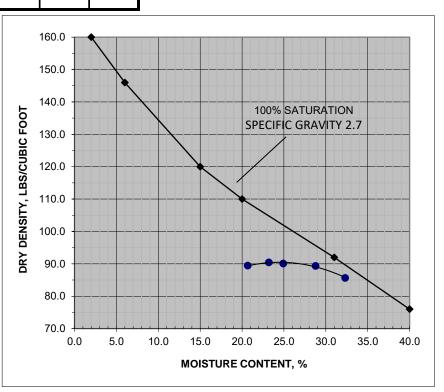
[x] MODIFIED ASTM D 1557

10 lb hammer, 18" drop, 5 layers

[X] Manual hammer [] Mechanical hammer

ASTM	Soil	Mold, in.	Blows	Mold Wt.
Α	ML	4	25	9.23

			4" Mold
	A	Retained on No.4 ≤ 25%	use passing No.4
			4" Mold
	В	No.4 ≥ 25% & 3/8" <25%	use passing 3/8"
			6" Mold
(С	3/8" ≥25% & 3/4" ≤30%	use passing 3/4"


MAXIMUM DRY
DENSITY (pcf) 90.1 NA

OPTIMUM
MOISTURE
CONTENT (%) 24.9

INITIAL GRADATION

Total Weight (gm)	15400

	Wt.	Wt.
Screen size	Screen	Cumulat
+ 3/4" screen	0	0
+ 3/8" screen	0	0
+ No.4 screen	0	0

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

PERCENT ORGANICS (ASTM D2974)

Project Name:	Waduhl Geotech	Project Number:	023156		
Project Manager:	AT	Performed By:	JMA	Date:	12/1/2023
		Checked By:	KEW	Date:	12/5/2023

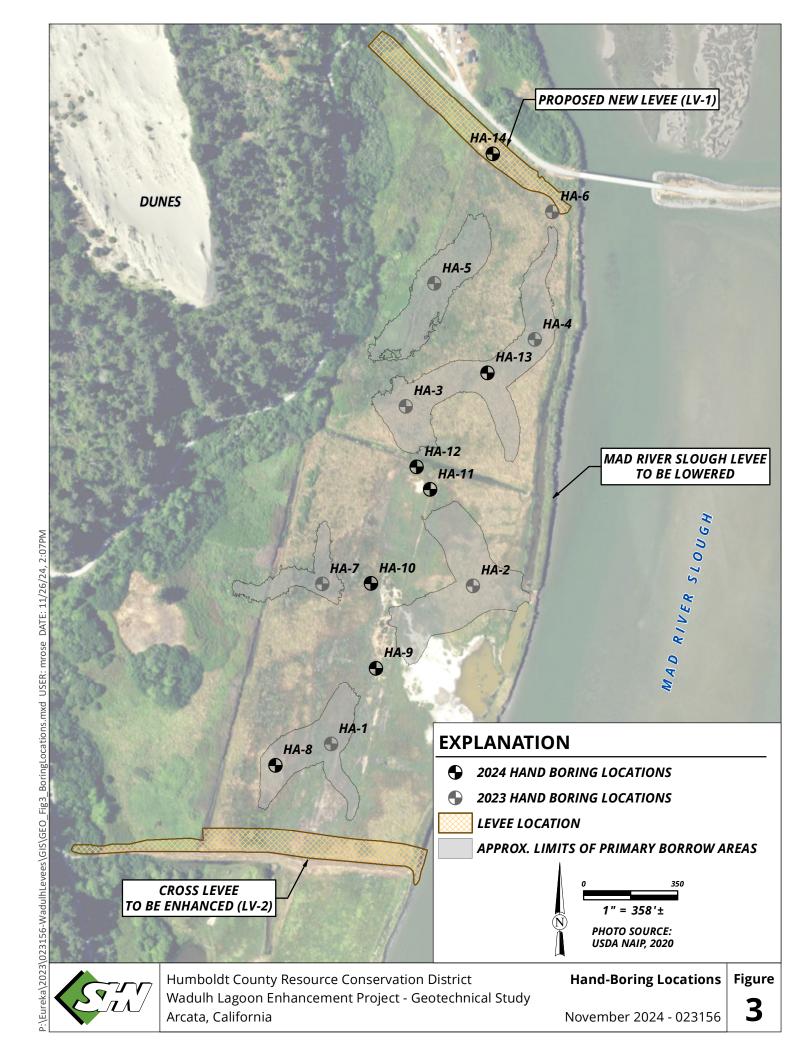
Lab Sample #	Project Sample #	Pan #	Weight of Dry Soil and Pan	Pan Weight	Weight of Dry Soil	Weight of Burned Soil and Pan	Weight of Burned Soil	Weight of Organics	% Organics
23-1070	HA-1 @ 3-3.5'	TEX	37.28	18.98	18.3	35.53	16.55	1.75	9.56
23-1076	HA-3 @ 1-2'	USA	38.98	16.01	22.97	36.27	20.26	2.71	11.80
23-1081	HA-5 @ 0-1'	TES	40.79	18.98	21.81	37.9	18.92	2.89	13.25
23-1089	HA-7 @ .5-1.0'	USA	38.52	16.02	22.50	35.21	19.19	3.31	14.71

Reference: 023156 February 18, 2025

Jill Demers, Executive Director Humboldt County Resource Conservation District 5630 South Broadway St. Eureka, CA 95503

Subject: Addendum 1 to Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project

SHN previously completed a geotechnical investigation report for the Wadulh Lagoon Tidal Wetland Enhancement Project (dated March 6, 2024), which characterized existing soil and groundwater conditions and provided construction considerations and recommendations for levee construction. In our report we identified and discussed some of the challenges of working with the existing onsite soils. Loose, saturated sands identified in some areas present issues for the stability of planned features such as the sills. The organic-rich silts found in most other areas will be relatively wet and challenging to compact without extreme measures to moisture condition. This addendum provides the results of additional field and laboratory testing, and recommendations for alternative methods of levee construction.


The focus of our supplemental field and laboratory investigation was to further characterize shallow subsurface conditions within the excavation areas, evaluate the extent of the loose sands encountered in the previous hand borings, and develop alternative recommendations for construction of the project. Our scope of work included a subsurface investigation, laboratory testing of selected soils samples, and preparation of this addendum. Below, we provide our findings, conclusions, and soils-related recommendations for construction of the project.

Field Investigation and Laboratory Testing

Seven hand-auger borings (HA-8 through HA-14) were advanced across the site on July 10, 2024, to characterize soils and collect soil samples for laboratory testing. The boring locations were selected to evaluate the extent of loose sands initially encountered in HA-3 and HA-4, and to further characterize the organic silts encountered in the new lagoon and borrow areas. The borings were advanced to depths ranging from 3.75 to 6.5 feet below grade using a 3-inch auger bucket. An amended Figure 3 shows the locations of all borings, including those from our previous study. Boring logs are included as Appendix 1. Groundwater elevations encountered in the field are provided in a Table as Appendix 2.

Soil samples were collected by hand-driving a 2.5-inch-inside-diameter (ID), 3.0-inch-outside-diameter (OD) Modified California Sampler (MCS) containing steel liners; bulk soil samples were collected from the auger bucket. Samples were delivered to SHN's lab in Eureka for laboratory testing of moisture content and density, percent passing the No. 200 sieve, and Atterberg limits. Results of laboratory testing from both the 2023 and 2024 investigations are shown on the boring logs in Appendix 1 and attached as a summary table in Appendix 3.

Jill Demers

Addendum 1 to Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project

February 18, 2025 Page 2

Soil and Groundwater Conditions

Soils observed in the hand-auger borings (HA-8 through HA-14) are generally consistent with conditions encountered in the 2023 borings (HA-1 through HA-7; SHN, 2024), composed predominantly of fine-grained, overbank flood deposits (highly organic silt beneath a thin layer of topsoil). Loose, saturated fine sand was encountered at 2 feet below the ground surface (BGS) in HA-13, extending to the maximum depth explored (4.5 feet BGS), similar to previous borings nearby (HA-3 and HA-4). Poorly graded loose sands identified in our 2023 investigation were not found in the sill locations. Instead, in HA-10 and HA-12, we encountered loose, wet, cohesive silty sand at 2.75 feet and 2 feet, respectively, extending to 4 feet BGS in both borings.

Alternative Options for Levee Construction

In our initial report we provided recommendations for levee construction that follow generally accepted engineering practices for placement and compaction of fill materials. The reuse of native materials in intertidal environments like the Wadulh Lagoon project is complicated by the fine-grained nature of the existing soils, high moisture content and shallow groundwater. The time and effort necessary to moisture condition the soils to accommodate standard methods for fill placement and monitoring is not often practical on projects like this. Below we provide alternative recommendations for working with the soil conditions as they are. The use of these alternatives is meant to improve the constructability of the project.

It's important to note that the recommendations provided in our initial report for removal and management of the "target soils" (unsaturated material above the groundwater table) remain appropriate and will be important for consideration by the contractor in planning the work sequencing.

The primary challenge in constructability of the project is maintaining the stability of the subgrade below the levee, and along paths of travel for transporting and placing fill materials. The utilization of geosynthetics has proven to be useful on other local projects with similar challenges. Below, we provide specifications for two methods for developing a stabilized surface using geosynthetics;

- 1) using a **geogrid** with a well-graded granular material to form a mechanically stabilized layer, or
- 2) using a **geotextile fabric** to reinforce the subgrade.

Mechanically Stabilized Layer Using Geogrid

The use of a geogrid placed directly on the subgrade along with a granular material to interlock with the geogrid is what forms the mechanically stabilized layer from which equipment can work and to build up the fill prism. The following recommendations are made for this option:

1. Instead of removing all the vegetation from the footprint, we recommend leaving the surface layer of organics; this has been proven to improve performance and stabilization. The grasses should be cut/mowed, but the basal layer of the vegetation and root structures can be left in

Jill Demers

Addendum 1 to Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project

February 18, 2025 Page 3

place. Preparation of the subgrade for placement of the geogrid should include developing a relatively flat surface. Drainage swales or other irregularities should be filled in or otherwise smoothed out.

- 2. Once the subgrade is prepared, place a single layer of geogrid at the necessary width and length. We recommend using Tensar InterAx 750 Geogrid (or equivalent). Where more than one roll width (12 feet) of geogrid is necessary, the geogrid should be overlapped a minimum of 12 inches. We expect that the footprint of the northern levee will require a reinforced section two rolls wide.
- 3. Place 12 inches of granular material over the geogrid starting at one end, working in one direction so that the geogrid remains flat and no wrinkles are formed. Equipment should not be permitted to drive directly on the geogrid. The optimal granular material is well graded angular rock or recycled concrete with particle sizes no more than 3.5 inches in diameter and fines contents less than 15%. Poorly graded sand or other available granular material (although not as ideal) may also be suitable to achieve the stabilization objective.
- 4. The granular material should be carefully compacted into place. Static rolling is preferred. No vibratory action should be applied to achieve compaction.

Subgrade Reinforcement Using Geotextile

Subgrade reinforcement using a geotextile fabric generally doesn't provide the same level of benefit as a geogrid, but the benefits it does provide can be realized without the use of a granular soil. The following recommendations are made for this option:

- 1. Similar to preparation for the use of geogrid, some of the vegetative mat on the surface can be left in place, but more attention should be paid to achieving a flat prepared surface.
- 2. Lay out the geotextile fabric directly on the subgrade surface. We recommend using Mirafi[®] H2Ri (or equivalent). The layer must extend laterally far enough beyond the working surface to be attached or pinned at the edges such that any slack between the edges is minimized. This is to prevent sagging in the middle. The Mirafi[®] H2Ri comes in 15-foot-wide rolls.
- 3. Once the geotextile is laid out and pinned tightly at the edges, borrow soils may be placed directly on top and pushed out in one direction so that the fabric is put under tension. A first lift of approximately 18 inches is recommended.

Fill Placement

Once a stabilization layer has been established, fill placement can continue using borrow materials. We recommend that fills be placed in thin lifts (less than 12-inch loose lifts) to promote drying of soils during placement activities and improve compaction. Recommendations associated with monitoring field densities through standard compaction testing will not be applicable with this approach. Instead, a "performance" specification will need to be developed in the field based on site conditions and equipment. A representative of SHN should provide oversight and field recommendations, as necessary to ensure the means and methods will meet the objectives of the project. Lightweight equipment should

Jill Demers

Addendum 1 to Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland **Enhancement Project**

February 18, 2025 Page 4

be used to spread and compact soils. Tracked equipment may be necessary. Rollers should not be used in vibratory mode. Soils should be allowed to dry or mixed with drier soils if they are too wet to be effectively spread and tracked/rolled into place.

Additional Stabilization Layer

If equipment access and/or fill placement becomes difficult due to the stability of the placed fill, then an additional stabilization layer can be developed. This will likely be a decision made in the field based on the success of the means and methods and the weather conditions at the time of construction.

Soils placed at over-optimum conditions can be expected to dry and consolidate over time. The levee should be slightly overbuilt to accommodate settlement over time. If long-term accessibility for equipment on the levee crest is required, a layer of geotextile fabric could be placed approximately 18 inches below finished grade to help maintain longevity of the levee crest surface.

Closure

The analyses, conclusions, and recommendations contained in this report are based on site conditions that we observed at the time of our investigation, data from our subsurface explorations and laboratory tests, our current understanding of proposed project elements, and on our experience with similar projects in similar geotechnical environments. Limitations associated with the use of this information provided in our original report remain applicable to this document.

Please call me at (707) 441-8855 if you have any questions.

Sincerely, **SHN**

signed 2-18-2025

Jason Buck Principal Engineering Geologist

JPB:lam

Appendices

2. Groundwater Elevations

3. Laboratory Test Results and Table

1. Boring Logs

Reference Cited

SHN. (March 6, 2024). "Geotechnical Investigation Report for Wadulh Lagoon Tidal Wetland Enhancement Project." Eureka, CA:SHN.

SON PAUL

KEY TO SOIL PROFILE LOG

SAMPLE TYPES

HAND DRIVEN TUBE SAMPLE

BULK (GRAB) SAMPLE

SYMBOLOGY

 $oldsymbol{\mathbb{Z}}$

STABILIZED WATER LEVEL

 ∇

INITIAL WATER LEVEL

---- APPROXIMATE CONTACT

— WELL-DEFINED CONTACT

ABBREVIATIONS

PΡ Pocket Pen

Moisture Content MC

Dry Density DD

Liquid Limit LL

PLPlastic Limit

BORING NUMBER HA-1 PAGE 1 OF 1 CLIENT Humboldt County Resource Conservation District PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement PROJECT LOCATION APN 506-291-014 PROJECT NUMBER 023156 GROUND ELEVATION 2.9 ft NAVD88 HOLE SIZE 3" **COMPLETED** 10/13/23 **DATE STARTED** 10/13/23 **GROUNDWATER DEPTH** DRILLING CONTRACTOR DRILLING METHOD Hand Auger $\sqrt{2}$ AT TIME OF DRILLING 2.75 ft / Elev 0.15 ft LOGGED BY A. Troia CHECKED BY R. Johnson **NOTES** GENERAL BH / TP / WELL - DATA TEMPLATE FOR TESTING.GDT - 11/26/24 21:00 - NEUREKANGEOGROUP/GINTLIBRARY/BENTILEY/GINTCLIPROJECTS/PROJECT FILES/2023/023/56-WADULHLEVEES.GPJ SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. MATERIAL DESCRIPTION **TESTS** 0.0 (ML) SILT, soft, moist, dark brown, abundant organics, dense mat of very fine roots, (TOPSOIL) ML GB (OH) ORGANIC SILT, medium stiff, dry, brownish gray, high plasticity, low dry strength, slightly mottled/FeO staining, many very fine roots. Becomes slightly moist Slight decrease in organics/root content. MC PP = 1.3 tsf <u>1</u> MC = 49%DD = 64 pcfОН ∇ Becomes wet, soft. GB % Organics = 9.6 Becomes dark gray. GB Layer of dark brown and black, stratified, organic-rich deposits. 5.0 Bottom of borehole at 5.0 feet.

BORING NUMBER HA-2 PAGE 1 OF 1 CLIENT Humboldt County Resource Conservation District PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement PROJECT NUMBER 023156 PROJECT LOCATION APN 506-291-014 **COMPLETED** 10/13/23 GROUND ELEVATION 3.6 ft NAVD88 HOLE SIZE 3" **DATE STARTED** 10/13/23 **GROUNDWATER DEPTH** DRILLING CONTRACTOR DRILLING METHOD Hand Auger ✓ AT TIME OF DRILLING 4.00 ft / Elev -0.40 ft LOGGED BY A. Troia CHECKED BY R. Johnson **NOTES** GENERAL BH / TP / WELL - DATA TEMPLATE FOR TESTING. GDT - 11/26/24 21:00 - NEUREKANGEOGROUP/GINTLIBRARY/BENTLEY/GINTCLIPROJECTS/PROJECT FILES/2023/023156-WADULHLEVEES.GP. SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. MATERIAL DESCRIPTION **TESTS** 0.0 (ML) SILT, soft, moist, dark brown, abundant organics, dense mat of very fine roots, (TOPSOIL) ML (ML) SILT with SAND, soft, dry, light grayish brown, very fine sand. (ML) SANDY SILT, soft, dry, grayish brown to brownish gray, very fine roots, weak mottling MC = 18% with FeO staining. MCS DD = 81 pcfFines = 62% ML Becomes plastic. (OH) ORGANIC SILT, soft, slightly moist, grayish brown to brownish gray, medium to high plasticity, 5% very fine sand. GB Fines = 95% Attempted slide hammer mod-cal sample from 2.5 to 3' with approx. 4" recovery. Becomes medium stiff. OH Becomes moist, contains FeO stains, trace very fine sand. Becomes wet. 5.0 Bottom of borehole at 5.0 feet.

BORING NUMBER HA-3 PAGE 1 OF 1 CLIENT Humboldt County Resource Conservation District PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement PROJECT NUMBER 023156 PROJECT LOCATION APN 506-291-014 **COMPLETED** 10/13/23 GROUND ELEVATION 4 ft NAVD88 HOLE SIZE 3" **DATE STARTED** 10/13/23 **GROUNDWATER DEPTH** DRILLING CONTRACTOR DRILLING METHOD Hand Auger $\sqrt{2}$ AT TIME OF DRILLING 1.35 ft / Elev 2.65 ft LOGGED BY A. Troia CHECKED BY R. Johnson **NOTES** GENERAL BH / TP / WELL - DATA TEMPLATE FOR TESTING. GDT - 11/26/24 21:00 - NEUREKANGEOGROUP/GINTLIBRARY/BENTLEY/GINTCLIPROJECTS/PROJECT FILES/2023/023156-WADULHLEVEES.GP. SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. MATERIAL DESCRIPTION **TESTS** 0.0 (ML) SILT, soft, moist, dark brown, abundant organics, dense mat of very fine roots, (TOPSOIL). (OH) ORGANIC SILT, dry, grayish brown, fine roots/organics, low dry strength, high MC = 66% DD = 54 pcfGB LL = 124 PL = 87 OH Becomes moist. ∇ PP = 1.5 tsf % Organics = GB Organic rich, dark brown horizon. 11.8 Grades to gray. (SP) POORLY GRADED SAND, loose, wet, brownish gray, trace silt, quartz rich, fine sand. 2.5 GB Grades to dark gray. SP Wet, loose sand. Bottom of borehole at 4.5 feet.

BORING NUMBER HA-4 PAGE 1 OF 1

1	(1
	C	ILA	_/

1							
1				rce Co	onserva	ation District	PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement
			R 023156				PROJECT LOCATION APN 506-291-014
		_				LETED 10/20/23	
1							
			D Hand Auger				∑ AT TIME OF DRILLING 2.00 ft / Elev 1.20 ft
1		Y <u>A.</u>	Troia	— '	CHEC	KED BY R. Johnson	-
NOTE	<u>:</u> S					ı	-
o DEPTH (#)	SAMPLE TYPE	NOMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
023/02	-000	_		ML	1/2 1/1/2 1/2 2/1/2 1/2	(TODSOIL)	oist, dark brown, abundant organics, dense mat of very fine roots,
SISPROJECI_FILES/20		AC	PP = 1.3 tsf MC = 61% DD = 50 pcf	ОН	<u> </u>	(OH) ORGANIC S	SILT, soft to medium stiff, dry to slightly moist, high plasticity, low y strength, fine roots/organics, slightly mottled with FeO stains near wet at 1'.
AARYNBEN I LEYNGIN I CLNPROJEC		BB		SP		15 7	RADED SAND, loose, wet, gray to bluish gray, trace silt, quartz rich, fine
2.5 2.5						Grades to dark gr Hole caving due to 3.0	ay. o loose, wet sand. 0.2 Bottom of borehole at 3.0 feet.
GENERAL BH / IP / WELL - DATA TEMPLATE FOR TESTING.GDT - 11/26/24 27:00 - NEUREKAIGEOGROUP/GINTILIBRARY/BENTILEY/GINTICL/PROJECT FILES/2023/023/023/023/023/023/023/023/023/02							

BORING NUMBER HA-5 PAGE 1 OF 1

CLIENT H	ımholdt County Reso	urce Conse	vation District	PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement
	IUMBER <u>023156</u>	uice Corise	vation district	PROJECT LOCATION APN 506-291-014
		COM	IPLETED 10/20/23	
	IETHOD Hand Auge			Σ AT TIME OF DRILLING _1.20 ft / Elev 2.90 ft
	Y _A. Troia		CKED BY R. Johnson	
NOTES			<u></u>	_
SAMPLE TYPE	TESTS	U.S.C.S. GRAPHIC		MATERIAL DESCRIPTION
	PP = 1.3 tsf MC = 49% DD = 69 pcf % Organics = 13.3	ML		dark brown, abundant organics, fine roots, low plasticity, (TOPSOIL).
2.5	LL = 56 PL = 33		Becomes mediu	gray with fine roots.
				Bottom of borehole at 3.5 feet.
S (#) O DEPTH (#) O DEPTH (#) O O O O O O O O O O O O O O O O O O O				

BORING NUMBER HA-6 PAGE 1 OF 1

10	in								
CLIEN	T Humi	ooldt (`ounty [Posoure	co Conconvation District	PROJECT NAME _Wadulh Lagoon Tidal Wetland Enhancement			
	ECT NUN				Le Conservation District	PROJECT LOCATION APN 506-291-014			
1					COMPLETED 10/20/23				
	ING CON								
					CHECKED BY R. Johnson				
	s								
	Д								
DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION			
	MPL	U.S.	3RA LO			MATERIAL DESCRIPTION			
0.0	SAI								
0.0		ML	1/2. · N 1/2.	0.2		abundant organics, dense mat of very fine roots, (TOPSOIL).			
				<u> </u>	(OH) ORGANIC SILT, soft, dry to m	oist, high plasticity, brownish gray, FeO stains near organics (fine roots).			
				Ā					
				Ā					
	200 an								
	∰ GB			∇	Organic-rich layer, very dark brown.				
		ОН		$\bar{\Delta}$					
					Grades to dark gray, decrease in or	ganic content.			
-									
	€ GB								
2.5									
					Grades to dark gray; some fine root	S.			
	-		CCCCI			Bottom of borehole at 3.0 feet.			

BORING NUMBER HA-7 PAGE 1 OF 1

	1	-	
<	2	V .	."/

CLIE	NT .	Huml	ooldt County Resou	rce Co	nserva	ion District PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement			
			MBER <u>023156</u>			PROJECT LOCATION APN 506-291-014			
						ETED 10/20/23 GROUND ELEVATION 2.3 ft NAVD88 HOLE SIZE 3"			
						GROUNDWATER DEPTH			
			HOD Hand Auger			✓ AT TIME OF DRILLING 1.35 ft / Elev 0.95 ft	_		
		BY _	A. Troia	— '	CHECK	ED BY R. Johnson			
NOT	_		T		1				
O DEPTH (ft)		SAMPLE IYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION			
1LES/2023/0	m	GB	Fines = 95%	ML	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(ML) SILT, soft, moist, dark brown, abundant organics, dense mat of very fine roots, (TOPSOIL). (OH) ORGANIC SILT, soft to medium stiff, dry, brownish gray, moderate cementation, high placeticity, exception right (very fine roots).	2.0		
T	X	МС	PP = 4.3 tsf MC = 40% DD = 61 pcf LL = 58 PL = 36 % Organics =			plasticity, organic rich (very fine roots).			
N CENTRO	m	OB	14.7			▼ Becomes moist, soft, low toughness, grades to gray-dark gray. Becomes wet.			
SENILEY GII	M	GB		ОН					
2.5	M	GB							
SKOUP/GIN	m_	GB							
ğ 						3.2 Bottom of borehole at 3.2 feet.	-0.9		
GENERAL BH 7 IP 7 WELL - DATA TEMPLATE FOR TESTING.GDT - 11/26/24 27:00 - NEUREKANGEOGROUP/GINT LLENGARYBEN TESTING.GDT - 11/26/24 27:00 - NEUREKANGEOGROUP/GINT LENGARYBEN TESTING TESTIN									

BORING NUMBER HA-8

PAGE 1 OF 1

				_
1		V	U	V 7
	C	1	ZЛ	_/

CLIEN	T Humb	oldt County Resou	ırce Co	onserva	tion District	PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement
PROJI	ECT NUM	BER <u>023156</u>				PROJECT LOCATION APN 506-291-014
DATE	STARTED	7/10/24		COMP	LETED 7/10/24	GROUND ELEVATION 3 ft NAVD88 HOLE SIZE 3"
DRILL	ING CON	TRACTOR				GROUNDWATER DEPTH
DRILL	ING METI	HOD Hand Auger	r			$\sqrt{2}$ AT TIME OF DRILLING <u>3.50 ft / Elev -0.50 ft</u>
LOGG	ED BY _A	A. Troia		CHECK	KED BY	
NOTE	s					
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
20020			ML	71 1N .71	(ML) TOPSOIL, m	
				½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½	0.3 (OH) ORGANIC S roots, organic rich.	ILT, medium stiff, dry, gray, mottled, medium to high plasticity, many fine
	MCS	MC = 44% DD = 71 pcf	_		Becomes moist	
2.5			ОН		Becomes soft	
					∑ Becomes wet 3.8	-0. Bottom of borehole at 3.8 feet.
-NAL BITT I WELL - DATA TEMPERALE TON TESTING 50 I - 1 (2012+2 1.00						

BORING NUMBER HA-9 PAGE 1 OF 1 CLIENT Humboldt County Resource Conservation District PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement PROJECT NUMBER 023156 PROJECT LOCATION APN 506-291-014 DATE STARTED 7/10/24 COMPLETED 7/10/24 GROUND ELEVATION 2.3 ft NAVD88 HOLE SIZE 3" DRILLING CONTRACTOR **GROUNDWATER DEPTH** DRILLING METHOD Hand Auger $\sqrt{2}$ AT TIME OF DRILLING 2.00 ft / Elev 0.30 ft LOGGED BY A. Troia CHECKED BY **NOTES** GENERAL BH / TP / WELL - DATA TEMPLATE FOR TESTING.GDT - 11/26/24 21:00 - NEUREKANGEOGROUP/GINTLIBRARY/BENTILEY/GINTCLIPROJECTS/PROJECT FILES/2023/023/56-WADULHLEVEES.GPJ SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. **TESTS** MATERIAL DESCRIPTION ML (ML) TOPSOIL, many fine roots. (ML) SANDY SILT, moist, gray, fine sand, cohesive, low plasticity, some organics. (OH) ORGANIC SILT, medium stiff, dark gray, mottled, medium to high plasticity, fine to medium roots. MC = 52% MCS DD = 67 pcfBecomes wet and soft with decreased mottling. 2.5 OH LL = 61 PL = 33 GB Moderate to strong sulfuric odor (decaying organics). GB 5.0

Bottom of borehole at 6.5 feet.

BORING NUMBER HA-10

PAGE 1 OF 1

	1			
1		V	7	7
	2	1	LI	_/
	1			

CLIENT Humboldt County Resource Conservation District						PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement
PROJ	ECT NUM	IBER <u>023156</u>				PROJECT LOCATION APN 506-291-014
DATE STARTED 7/10/24 COMPLETED 7/10/24						GROUND ELEVATION 3 ft NAVD88 HOLE SIZE 3"
DRILL	ING CON	TRACTOR				GROUNDWATER DEPTH
LOGG	ED BY	A. Troia	(CHECK	KED BY	
NOTE	s					
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
0.0			MI	71 1N .71	0.2 (ML) TOPSOIL, max	any fine roots
ANY TIBEN LEFT TO SIN TO LIFT TO SET			ОН		(OH) ORGANIC S organic rich, mode	ILT, medium stiff, dry to moist, gray with brown mottling, fine roots, rate toughness.
2.5			ML		2.5(ML) SILT, soft, we	et, brown, organic-rich, (BURIED TOPSOIL?)
I IZZZZZZ Z 1.00 - NEORENAIGEOGIOCOTINA	™ GB	Fines = 37%	SM		Sand occurs as thi	n lenses from 3.5 to 4' LT with SAND and SHELLS, soft, gray, wet, cohesive, medium plasticity.
5.0			OL OH		5.0 (OH) ORGANIC S 5.3	LT, soft, gray, wet, organic rich, decaying orgaics, trace sand. -2.0 -2.0 -2.0 -2.0
5						Bottom of borehole at 5.3 feet.
GENERAL BRY ITY WELL - DATA TEM						

BORING NUMBER HA-11 PAGE 1 OF 1

1	677
	CIN

PROJECT NUM DATE STARTE DRILLING CON DRILLING MET	MBER 023156 D 7/10/24 NTRACTOR THOD Hand Auger	(COMPL		GROUNDWATER DEPTH	
NOTES					-	
SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
	MC = 107% DD = 41 pcf Fines = 58%	OH - ML - OH		Becomes wet 2.0 (ML) Grades to SA sand occurs as this	ANDY SILT, soft, wet, gray, cohesive, few organics, wood fragments at 2'. In lenses SILT, soft, wet, brownish gray, high plasticity. Bottom of borehole at 3.8 feet.	

BORING NUMBER HA-12 PAGE 1 OF 1

				_
1		V	U	V 7
	C	1	ZЛ	_/

CLIEN	NT Humb	ooldt County Resou	rce Co	nserva	tion District	PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement				
PROJ	ECT NUM	IBER <u>023156</u>								
DATE STARTED 7/10/24 COMPLETED 7/10/24 DRILLING CONTRACTOR DRILLING METHOD Hand Auger			COMPL	ETED 7/10/24	GROUND ELEVATION 2.7 ft NAVD88 HOLE SIZE 3"					
					$\underline{\nabla}$ AT TIME OF DRILLING _2.40 ft / Elev 0.30 ft					
LOGG	LOGGED BY A. Troia CHECKED BY					_				
NOTE	s					_				
S156-WADULHLEVEES.G O DEPTH O (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION				
23/02				1/2. 1/2.	0.2 TOPSOIL, many f	fine roots. 2.				
JECTSPAROJECT FILES/202			ОН		(OH) ORGANIC S and fine roots.	SILT, medium stiff, dry, gray and brown, lenses of hard silt with organics				
יין ובדי (פווי וכרי) איני איני איני איני איני איני איני אי					Grades slightly sa	indy (~5%).				
2.5	™ GB	Fines = 44%	SM		∑ Grades to dark bli					
I:00 - WEUKEKANGEOU					No auger bucket r	retention at 3.5'; silt content increasing at 4'				
7 47			1	<u>1949[3]</u>	4.0	-1.s Bottom of borehole at 4.0 feet.				
GENERAL BH / IP / WELL - DATA TEMPLATE FOR TESTING-GDT - TIZO/24 Z1:00 - NEDREMANGE COROUP/GINT TEBRARY BEN TESTING-GDT - TIZO/24 Z1:00 - NEDREMANGE COROUP TESTING-GDT - TIZO										

BORING NUMBER HA-13 PAGE 1 OF 1

(977)
CIL

CLIEN	IT Humb	oldt (County	Resc	ource	Conservation District	PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement
PROJ	ECT NUM	IBER	0231	56			PROJECT LOCATION APN 506-291-014
DATE	STARTE	D <u>7/</u>	10/24			COMPLETED 7/10/24	GROUND ELEVATION 3.6 ft NAVD88 HOLE SIZE 3"
DRILL	DRILLING CONTRACTOR			GROUNDWATER DEPTH			
1						CHECKED BY	<u> </u>
NOTE	s						<u> </u>
DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG				MATERIAL DESCRIPTION
2	SAI						
0.0		ML	1/2 1/2		(N	ML) TOPSOIL, many fine roots	
			<u> </u>	1.0	<u> — </u>	VIL) SILT, soft, dark brownish gra	y, fine roots
		ML		2.0		rades to gray, becomes moist	1
2.5	∰ GB				(S <u>▼</u>	SP) POORLY GRADED SAND, k	pose, moist, gray with brown mottling, <10% fines.
	•				± B	ecomes wet	
		SP			S	ilt/clay layer from 3 to 3.25'	
					В	ecomes bluish gray	
				4.5			-0
		<u>I</u>	<u> </u>	14.0	-		Bottom of borehole at 4.5 feet.

BORING NUMBER HA-14

PAGE 1 OF 1 CLIENT Humboldt County Resource Conservation District PROJECT NAME Wadulh Lagoon Tidal Wetland Enhancement PROJECT NUMBER 023156 PROJECT LOCATION APN 506-291-014 DATE STARTED 7/10/24 COMPLETED 7/10/24 GROUND ELEVATION 3.2 ft NAVD88 HOLE SIZE 3" DRILLING CONTRACTOR **GROUNDWATER DEPTH** DRILLING METHOD Hand Auger $\sqrt{2}$ AT TIME OF DRILLING 2.70 ft / Elev 0.50 ft LOGGED BY A. Troia CHECKED BY NOTES GENERAL BH / TP / WELL - DATA TEMPLATE FOR TESTING.GDT - 11/26/24 21:00 - NEUREKANGEOGROUP/GINTLIBRARY/BENTILEY/GINTCLIPROJECTS/PROJECT FILES/2023/023/56-WADULHLEVEES.GPJ SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. **TESTS** MATERIAL DESCRIPTION (OH) ORGANIC SILT, medium stiff, gray with brown mottling, medium to high plasicity. ОН Thin lenses of SANDY SILT (OH) Grades to ORGANIC SILT, soft, moist, gray, medium to high plasticity. MC = 63%MCS DD = 59 pcfBrown, organic rich layer with odor of decayed organics, abundant woody material. ОН Lamination of LEAN CLAY (4 mm thick), gray. Decreased wood content Bottom of borehole at 4.0 feet.

Groundwater Elevations

Appendix 2

Groundwater Elevations

Boring ID	Date Measured	Ground Surface Elevation (feet NAVD88 ⁱ)	Groundwater Elevation (feet NAVD88)	Depth to Water (feet BGS ⁱⁱ)
HA-1	10/13/2023	2.9	0.1	2.8
HA-2	10/13/2023	3.6	-0.4	4.0
HA-3	10/13/2023	4.0	2.6	1.4
HA-4	10/20/2023	3.2	1.2	2.0
HA-5	10/20/2023	4.1	2.9	1.2
HA-6	10/20/2023	3.5	2.0	1.5
HA-7	10/20/2023	2.3	0.9	1.4
HA-8	7/10/2024	3.0	-0.5	3.5
HA-9	7/10/2024	2.3	0.3	2.0
HA-10	7/10/2024	3.0	1.0	2.0
HA-11	7/10/2024	2.5	1.3	1.3
HA-12	7/10/2024	2.7	0.3	2.4
HA-13	7/10/2024	3.6	1.1	2.5
HA-14	7/10/2024	3.2	0.5	2.7

ⁱ NAVD88: North American vertical datum, 1988

ii BGS: below ground surface

Laboratory Test Results

3

Appendix 3

Laboratory Test Results									
Sample Location	In-situ Dry Density (pcf) ⁱ	In-situ Moisture Content	Organic Content	Liquid Limit	Plastic Index	Optimum Moisture Content	Maximum Dry Density (pcf)	Percent Fines (Passing No. 200 sieve)	
HA-1 0-1'						21.6%	99.2		
HA-1 2.5-3'	64	49%							
HA-1 3-3.5'			10%	83	39				
HA-2 0.5-1'	81	18%						62%	
HA-2 2-2.5'								95%	
HA-3 0.5-1'	54	66%		124	37				
HA-3 1-1.5'			12%						
HA-4 0-1'									
HA-4 0.5-1'	50	61%				24.9%	90.1		
HA-5 0.8-1'	69	49%							
HA-5 0-1'			13%						
HA-5 3-3.5'				56	23				
HA-7 0.25-0.75'								95%	
HA-7 0.5-1'	61	40%	15%	58	22				
HA-8 1-1.5'	71	44%							
HA-9 1.5-2'	67	52%							

Humboldt Resource Conservation District

Wadulh Lagoon Tidal Wetland Enhancement Project Geotechnical Report

November 2024

Page 2

Sample Location	In-situ Dry Density (pcf) ⁱ	In-situ Moisture Content	Organic Content	Liquid Limit	Plastic Index	Optimum Moisture Content	Maximum Dry Density (pcf)	Percent Fines (Passing No. 200 sieve)
HA-9				61	28			
3.5-4'				01				
HA-10								37%
3-3.5'								3170
HA-11	41	107%						58%
2-2.5'	41	107 %						30%
HA-12								1.10/
2-2.5'								44%
HA-14 1.25-1.75'	59	63%						

DENSITY BY DRIVE- CYLINDER METHOD (ASTM D2937)

Project Name:	Wadulh	Project Number:	023156
Performed By:	JMA	Date:	11/27/23
Checked By:	KEW	Date:	12/5/2023

Project Manager: AT

Dry Density, lb/ft³

Lab Sample Number	23-1069	23-1072	23-1075	23-1079	23-1083
Boring Label	HA-1	HA-2	HA-3	HA-4	HA-5
Sample Depth (ft)	2-2.5'	0.5-1.0'	0.5-1.0'	0.5-1.0'	0.5-1.0'
Diameter of Cylinder, in	2.42	2.42	2.42	2.42	2.42
Total Length of Cylinder, in.	6.00	6.00	6.00	6.00	6.00
Length of Empty Cylinder A, in.	0.00	0.00	0.00	0.00	0.00
Length of Empty Cylinder B, in.	1.85	0.88	1.60	0.82	0.73
Length of Cylinder Filled, in	4.15	5.12	4.40	5.18	5.27
Volume of Sample, in ³	19.09	23.55	20.24	23.83	24.24
Volume of Sample, cc.	312.80	385.91	331.64	390.44	397.22
	1	Ι			
Pan #	a6	A9	a7	a2	a1
Weight of Wet Soil and Pan	560.2	677.7	559.3	585.9	737.2
Weight of Dry Soil and Pan	405.9	589.6	371.0	397.6	521.1
Weight of Water	154.3	88.1	188.3	188.3	216.1
Weight of Pan	87.5	88.1	86.7	87.5	81.6
Weight of Dry Soil	318.4	501.5	284.3	310.1	439.5
Percent Moisture	48.5	17.6	66.2	60.7	49.2
Dry Density, g/cc	1.02	1.30	0.86	0.79	1.11

81.1

53.5

49.6

63.5

69.1

DENSITY BY DRIVE- CYLINDER METHOD (ASTM D2937)

Project Name: Wadulh		Project Number:	023156
Performed By: JMA		Date:	11/27/23
Checked By: KEW		Date:	12/5/2023
Project Manager: AT			
Lab Sample Number	23-1089		
Boring Label	HA-7		
Sample Depth (ft)	0.5-1.0'		
Diameter of Cylinder, in	2.42		
Total Length of Cylinder, in.	6.00		
Length of Empty Cylinder A, in.	0.00		
Length of Empty Cylinder B, in.	0.00		
Length of Cylinder Filled, in	6.00		
Volume of Sample, in ³	27.60		
Volume of Sample, cc.	452.24		
Pan #	A5		
Weight of Wet Soil and Pan	707.9		
Weight of Dry Soil and Pan	529.5		
Weight of Water	178.4		
Weight of Pan	86.9		
Weight of Dry Soil	442.6		
Percent Moisture	40.3		
Dry Density, g/cc	0.98		
Dry Density, lb/ft³	61.1		

DENSITY BY DRIVE- CYLINDER METHOD (ASTM D2937)

Project Name:	Wadulh	Project Number:	023156	
Performed By:	JMA	Date:	8/20/2024	
Checked By:	DJG	Date:	9/12/2024	
Project Manager:	AT			

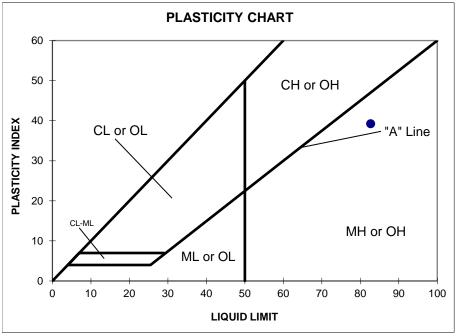
Lab Sample Number	24-837	24-839	24-842	24-847	
Boring Label	HA-8	HA-9	HA-11	HA-14	
Sample Depth (ft)	1-1.5	1.5-2	2-2.5	1.25-1.75	
Diameter of Cylinder, in	2.42	2.42	2.42	2.42	
Total Length of Cylinder, in.	6.00	6.00	6.00	6.00	
Length of Empty Cylinder A, in.	0.00	0.00	1.08	0.85	
Length of Empty Cylinder B, in.	0.89	0.90	0.00	0.00	
Length of Cylinder Filled, in	5.11	5.10	4.92	5.15	
Volume of Sample, in ³	23.50	23.46	22.63	23.69	
Volume of Sample, cc.	385.16	384.41	370.84	388.17	

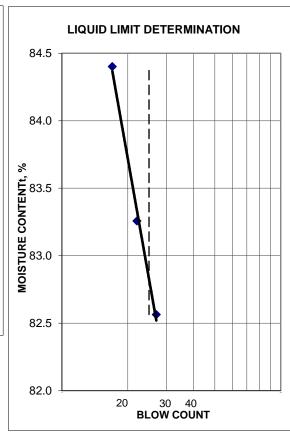
Pan #	s27	ss22	s25	ss26	
Weight of Wet Soil and Pan	778.1	776.5	648.9	764.5	
Weight of Dry Soil and Pan	587.2	561.4	388.3	532.4	
Weight of Water	190.9	215.1	260.6	232.1	
Weight of Pan	151.6	149.4	144.7	163.8	
Weight of Dry Soil	435.6	412.0	243.6	368.6	
Percent Moisture	43.8	52.2	107.0	63.0	
Dry Density, g/cc	1.13	1.07	0.66	0.95	
Dry Density, lb/ft³	70.6	66.9	41.0	59.3	

PERCENT PASSING # 200 SIEVE (ASTM - D1140)

Project Name:	Wadulh		Project Number:	023156
Performed By:	JMA		Date:	11/29/2023
Checked By:	KEW		Date:	12/5/2023
Project Manager:	AT		_	
	1			
Lab Sample Number	23-1073	23-1074	23-1088	
Boring Label	HA-2	HA-2	HA-7	
Sample Depth	0.5-1.0'	2-2.5'	0-0.5'	
Pan Number	ss2	ss3	ss11	
Dry Weight of Soil & Pan	388.5	371.5	426.4	
Pan Weight	193.4	197.1	192.8	
Weight of Dry Soil	195.1	174.4	233.6	
Soil Weight Retained on #200&Pan	268.5	206.3	205.3	
Soil Weight Passing #200	120.0	165.2	221.1	
Percent Passing #200	62	95	95	
Lab Sample Number				
Boring Label				
Sample Depth				
Pan Number				
Dry Weight of Soil & Pan				
Pan Weight				
Weight of Dry Soil				
Soil Weight Retained on #200&Pan				
Soil Weight Passing #200				
Percent Passing #200				

PERCENT PASSING # 200 SIEVE (ASTM - D1140)

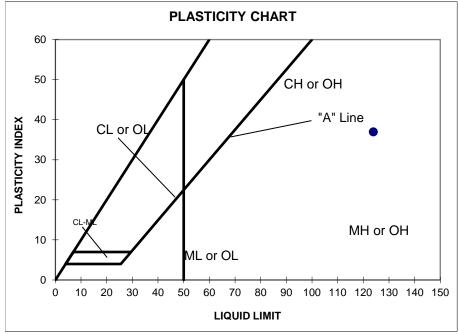

Project Name:	Wa	dulh	Project Number:	023156
Performed By:	JN	ЛΑ	Date:	8/23/2024
Checked By:	D	JG	Date:	9/3/2024
Project Manager:	Į.	AT	_	
Lab Sample Number	24-841	24-842	24-844	
Boring Label	HA-10	HA-11	HA-12	
Sample Depth (ft)	3-3.5	2-2.5	2-2.5	
Pan Number	ss1	ss11	ss8	
Dry Weight of Soil & Pan	344.2	306.3	465.6	
Pan Weight	194.8	192.7	192.9	
Weight of Dry Soil	149.4	113.6	272.7	
Soil Weight Retained on #200&Pan	288.9	240.3	345.6	
Soil Weight Passing #200	55.3	66.0	120.0	
Percent Passing #200	37	58	44	
Lab Sample Number				
Boring Label				
Sample Depth				
Pan Number				

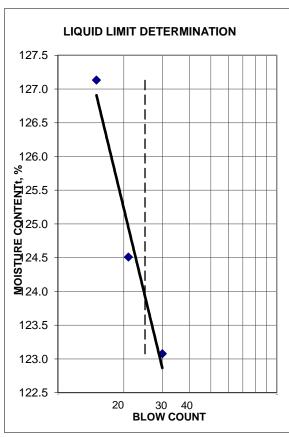

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

JOB NAME:	Wadulh	JOB #:	023156	LAB SAMPLE #:	23-1070
SAMPLE ID:	HA-1 @ 3-3.5'	PERFORMED BY:	JMA	DATE:	11/30/2023
PROJECT MANAGER:	AT	CHECKED BY:	KEW	DATE:	12/5/2023

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	19	20	10	11	12
В	PAN WT. (g)	16.870	17.140	29.590	28.670	29.340
С	WT. WET SOIL & PAN (g)	23.010	23.410	36.710	36.770	37.970
D	WT. DRY SOIL & PAN (g)	21.160	21.500	33.490	33.090	34.020
Е	WT. WATER (C-D)	1.850	1.910	3.220	3.680	3.950
F	WT. DRY SOIL (D-B)	4.290	4.360	3.900	4.420	4.680
G	BLOW COUNT			27	22	17
Н	MOISTURE CONTENT (E/F*100)	43.1	43.8	82.6	83.3	84.4

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
83	39	43

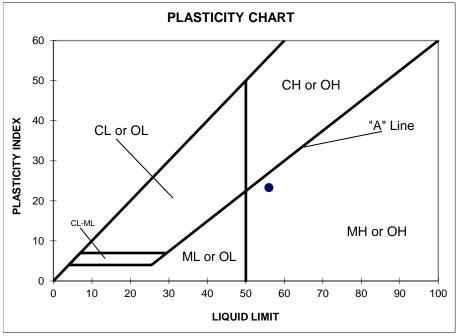


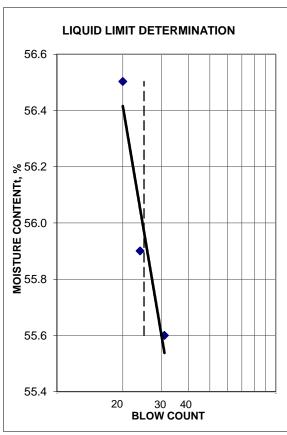

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

JOB NAME:	Wadulh	JOB #:	023156	LAB SAMPLE #:	23-1075
SAMPLE ID:	HA-3 @ 0.5-1.0'	PERFORMED BY:	JMA	DATE:	12/1/2023
PROJECT MANAGER:	AT	CHECKED BY:	KEW	DATE:	21/5/23

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	17	18	7	8	9
В	PAN WT. (g)	20.210	20.140	28.880	29.020	28.580
С	WT. WET SOIL & PAN (g)	26.350	27.450	34.970	35.890	34.440
D	WT. DRY SOIL & PAN (g)	23.470	24.080	31.610	32.080	31.160
E	WT. WATER (C-D)	2.880	3.370	3.360	3.810	3.280
F	WT. DRY SOIL (D-B)	3.260	3.940	2.730	3.060	2.580
G	BLOW COUNT			30	21	15
Н	MOISTURE CONTENT (E/F*100)	88.3	85.5	123.1	124.5	127.1

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
124	37	87

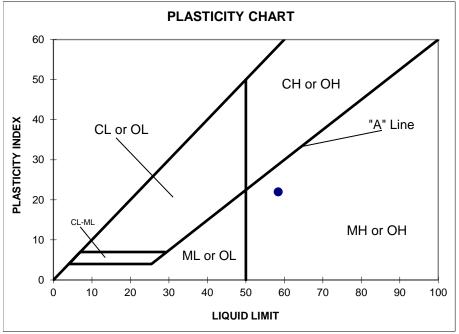


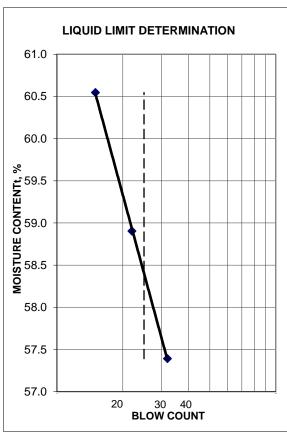

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

JOB NAME:	Wadulh	JOB #:	023156	LAB SAMPLE #:	23-1085
SAMPLE ID:	HA-5 @ 3-3.5'	PERFORMED BY:	JMA	DATE:	11/30/2023
PROJECT MANAGER:	AT	CHECKED BY:	KEW	DATE:	12/5/2023

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	13	14	1	2	3
В	PAN WT. (g)	22.000	20.120	29.590	28.920	28.990
С	WT. WET SOIL & PAN (g)	28.030	26.710	37.370	36.450	36.330
D	WT. DRY SOIL & PAN (g)	26.550	25.080	34.590	33.750	33.680
Е	WT. WATER (C-D)	1.480	1.630	2.780	2.700	2.650
F	WT. DRY SOIL (D-B)	4.550	4.960	5.000	4.830	4.690
G	BLOW COUNT			31	24	20
Н	MOISTURE CONTENT (E/F*100)	32.5	32.9	55.6	55.9	56.5

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
56	23	33

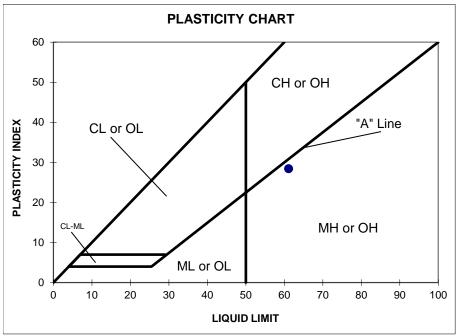


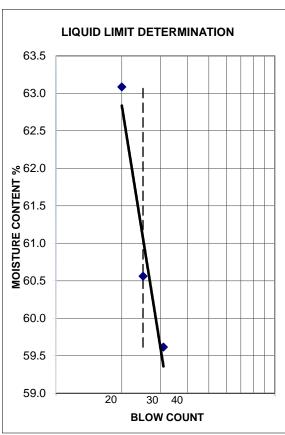

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

JOB NAME:	Wadulh	JOB #:	023156	LAB SAMPLE #:	23-1090
SAMPLE ID:	HA-7 @ 1-1.5'	PERFORMED BY:	JMA	DATE:	12/1/2023
PROJECT MANAGER:	AT	CHECKED BY:	KEW	DATE:	12/5/2023

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	19	20	10	11	12
В	PAN WT. (g)	16.880	17.140	29.580	28.670	29.360
С	WT. WET SOIL & PAN (g)	22.880	23.320	36.820	35.630	35.830
D	WT. DRY SOIL & PAN (g)	21.290	21.660	34.180	33.050	33.390
Е	WT. WATER (C-D)	1.590	1.660	2.640	2.580	2.440
F	WT. DRY SOIL (D-B)	4.410	4.520	4.600	4.380	4.030
G	BLOW COUNT			32	22	15
Н	MOISTURE CONTENT (E/F*100)	36.1	36.7	57.4	58.9	60.5

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
58	22	36





PROJECT NAME:	Wadulh	PROJECT NUMBER:	023156	LAB SAMPLE ID:	24-840
SAMPLE ID:	HA-9 3.5-4.0'	PERFORMED BY:	JMA	DATE:	8/28/2024
PROJECT MANAGER:	AT	CHECKED BY:	DJG	DATE:	9/3/2024

LINE NO.		TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 1	TRIAL NO. 2	TRIAL NO. 3
Α	PAN#	17	18	7	8	9
В	PAN WT. (g)	20.20	20.18	28.83	28.96	28.55
С	WT. WET SOIL & PAN (g)	27.28	26.45	36.30	36.41	34.47
D	WT. DRY SOIL & PAN (g)	25.52	24.92	33.51	33.60	32.18
E	WT. WATER (C-D)	1.76	1.53	2.790	2.81	2.29
F	WT. DRY SOIL (D-B)	5.32	4.74	4.68	4.64	3.63
G	BLOW COUNT			31	25	20
Н	MOISTURE CONTENT (E/F*100)	33.1	32.3	59.6	60.6	63.1

LIQUID LIMIT	PLASTIC INDEX	PLASTIC LIMIT
61	28	33

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

COMPACTION TEST DATA SHEET

Job Name: Wadulh Geotech Lab Sample N

Job Number:	023156	Tested By:	ZA	Date Tested:	11/8/23
Sample ID:	HA-1 @ 0-1'	Checked By:	KEW	Date Checked:	12/5/23

Sample Description: Subgrade Soil

Initial Gradation: + 3/4"= 0.0 % + 3/8"= 0.0 % + No.4= 0.0 %

Moisture Correction Gauge Number: Corection Factor:

TEST DATA

1201 27(17)					
Mold + Wet Soil, ю	13.264	12.897	13.038	13.135	13.251
Mold, lbs	9.229	9.229	9.229	9.229	9.229
Moist Soil, lbs	4.035	3.668	3.809	3.906	4.022
Factor (1/Vol.), cu. ft	30.00	30.00	30.00	30.00	30.00
WET DENSITY, pcf	121.0	110.0	114.3	117.2	120.7
Drying Dish No.	t9	t7	t11	t2	t8
Wet Soil and Dish	805.9	503.6	567.1	640.0	603.5
Dry Soil and Dish	668.1	456.3	505.3	559.3	516.8
Moisture, g.	137.8	47.3	61.8	80.7	86.7
DIsh, grams	114.1	113.0	113.3	112.5	115.4
Dry Soil, g.	554.0	343.3	392.0	446.8	401.4
MST. CONTENT, %	24.9	13.8	15.8	18.1	21.6
DRY DENSITY, pcf	96.9	96.7	98.7	99.2	99.2
% Moist. Added					

TEST METHOD

[] STANDARD ASTM D 698

5.5 lb hammer, 12" drop, 3 layers

[x] MODIFIED ASTM D 1557

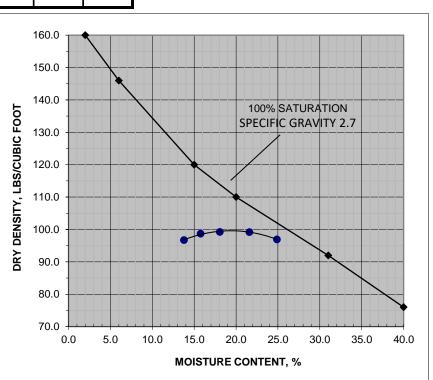
10 lb hammer, 18" drop, 5 layers

[X] Manual hammer	Mechanical hammer
-------------------	-------------------

ASTM	Soil	Mold, in.	Blows	Mold Wt.
Α	SW	4	25	9.229

		4" Mold
Α	Retained on No.4 ≤ 25%	use passing No.4
		4" Mold
В	No.4 ≥ 25% & 3/8" <25%	use passing 3/8"
		6" Mold
С	3/8" ≥25% & 3/4" ≤30%	use passing 3/4"

MAXIMUM DRY DENSITY (pcf) 99.2 NA


OPTIMUM

MOISTURE
CONTENT (%) 21.6

INITIAL GRADATION

Total Weight (gm)	15846

	Wt.	Wt.
Screen size	Screen	Cumulat
+ 3/4" screen	0	0
+ 3/8" screen	0	0
+ No.4 screen	0	0

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

COMPACTION TEST DATA SHEET

Job Name: Wadulh Geotech Lab Sample Number: 23-1051

Job Number: 023156		Tested By:	ZA	Date Tested:	11/8/23
Sample ID:	HA-4 @ 0-1'	Checked By:	KEW	Date Checked:	12/5/23

Sample Description: Subgrade Soil

Initial Gradation: + 3/4"= 0.0 % + 3/8"= 0.0 % + No.4= 0.0 %

Moisture Correction Gauge Number: Corection Factor:

TEST DATA

	ILSID	ЛІЛ			
Mold + Wet Soil, ю	12.828	12.944	12.983	13.067	13.009
Mold, lbs	9.23	9.23	9.23	9.23	9.23
Moist Soil, lbs	3.598	3.714	3.753	3.837	3.779
Factor (1/Vol.), cu. ft	30.00	30.00	30.00	30.00	30.00
WET DENSITY, pcf	107.9	111.4	112.6	115.1	113.4
Drying Dish No.	ss5	ss10	t9	t8	t3
Wet Soil and Dish	785.2	719.1	698.1	650.1	595.5
Dry Soil and Dish	684.2	620.5	581.8	530.6	478.1
Moisture, g.	101.0	98.6	116.3	119.5	117.4
DIsh, grams	195.5	195.4	115.1	115.4	114.7
Dry Soil, g.	488.7	425.1	466.7	415.2	363.4
MST. CONTENT, %	20.7	23.2	24.9	28.8	32.3
DRY DENSITY, pcf	89.4	90.4	90.1	89.4	85.7
% Moist. Added					

TEST METHOD

[] STANDARD ASTM D 698

5.5 lb hammer, 12" drop, 3 layers

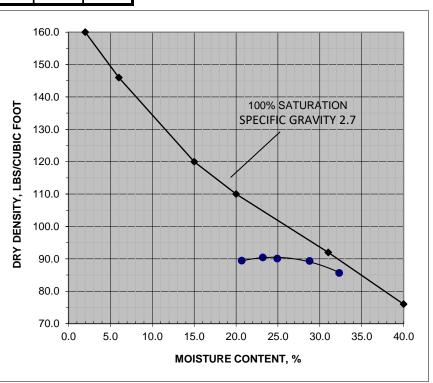
[x] MODIFIED ASTM D 1557

10 lb hammer, 18" drop, 5 layers

[X] Manual hammer [] Mechanical hammer

ASTM	Soil	Mold, in.	Blows	Mold Wt.
Α	ML	4	25	9.23

		4" Mold
Α	Retained on No.4 ≤ 25%	use passing No.4
		4" Mold
В	No.4 ≥ 25% & 3/8" <25%	use passing 3/8"
		6" Mold
С	3/8" ≥25% & 3/4" ≤30%	use passing 3/4"


MAXIMUM DRY DENSITY (pcf) 90.1 NA Rock Corr.

OPTIMUM
MOISTURE
CONTENT (%) 24.9

INITIAL GRADATION

Total Weight (gm)	15400

	Wt.	Wt.
Screen size	Screen	Cumulat
+ 3/4" screen	0	0
+ 3/8" screen	0	0
+ No.4 screen	0	0

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash Eureka, CA 95501-2138 Tel: 707/441-8855 FAX: 707/441-8877 E-mail: shninfo@shn-engr.com

PERCENT ORGANICS (ASTM D2974)

Project Name:	Waduhl Geotech	Project Number:	023156		
Project Manager:	AT	Performed By:	JMA	Date:	12/1/2023
		Checked By:	KEW	Date:	12/5/2023

Lab Sample #	Project Sample #	Pan #	Weight of Dry Soil and Pan	Pan Weight	Weight of Dry Soil	Weight of Burned Soil and Pan	Weight of Burned Soil	Weight of Organics	% Organics
23-1070	HA-1 @ 3-3.5'	TEX	37.28	18.98	18.3	35.53	16.55	1.75	9.56
23-1076	HA-3 @ 1-2'	USA	38.98	16.01	22.97	36.27	20.26	2.71	11.80
23-1081	HA-5 @ 0-1'	TES	40.79	18.98	21.81	37.9	18.92	2.89	13.25
23-1089	HA-7 @ .5-1.0'	USA	38.52	16.02	22.50	35.21	19.19	3.31	14.71